100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Introduction to Econometrics

Rating
4.0
(4)
Sold
8
Pages
19
Uploaded on
11-12-2017
Written in
2017/2018

A summary of all solutions to the problem sets and lectures. It contains all the information you need to pass the exam

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Yes
Uploaded on
December 11, 2017
Number of pages
19
Written in
2017/2018
Type
Summary

Subjects

Content preview

Hoorcollege week 1
Data types
- Cross-sectional data, one point in time but many measurements (units, like measures of households,
companies, districts and countries). This is especially useful to test economic theories on structural
relationships
- Time series data, a single or a few units collected at different point in time. Especially useful for
predictions of economic key figures.
- Panel data, Several units that are observed on at least two time points. A combination of cross-
sectional and time series data.

Simple linear regression
Y i=β 0 + β 1 X i+u i
Where Y is the dependent variable, X the independent variable,
β 0 the intercept, β 1 the slope and ui the regressor error.
The regression error consist of omitted components. These are the
other variables that influence Y other than X. It also includes errors in
the measurement of Y.

The sample mean
The least squares estimator of the population mean μY is the
sample mean:
n
min ∑ ( Y i−m )
2

m i=1

n
1
m=Ý = ∑ Y i
n i=1

How can we estimate the intercept and slope?
We will focus on the least squares estimator of the unknown parameters just like we did when calculating the
sample mean. We therefore have to solve:
n n
2 2
min ∑ ( Y i− Y^i ) =∑ ( Y i−( β 0 + β 1 X i))
β0 , β1 i=1 i=1
The OLS estimator minimises the average squared difference between the actual values and the predicted
values based on the estimated line.

The first order conditions for the intercept
n
∂ LS
=−2 ∑ Y i−( β 0+ β 1 X i )=0
∂ β0 i=1

n n

∑ (Y i)−n ^
β 0− ^
β 1 ∑ ( X i )=0
i=1 i=1



^ 1
n
β^1 n
β 0= ∑ (Y i)− ∑ ( X i )=Ý − ^
β 1 X́
n i=1 n i=1

The intercept doesn’t have content-related interpretation, if there are no observations where X=0. You can’t
make any conclusions outside your data range.

The first order conditions for the slope
n
∂ LS
=−2 ∑ ( Y i−( β 0 + β 1 X i ) ) X i=0
∂ β1 i=1

, n n n

∑ (Y i X i)− ^
β0 ∑ ( X i )− ^
β 1 ∑ ( X i )=0
2

i=1 i=1 i=1

n n n

∑ (Y i X i)−(Ý − ^β1 X́ )∑ ( X i )− β^1 ∑ ( X 2i )=0
i=1 i =1 i=1

n n n n

∑ (Y i X i)− Ý ∑ ( X i )− β^1 X́ ∑ ( X i ) = ^β1 ∑ ( X 2i )
i=1 i=1 i=1 i=1
n ^
n n n
1

n i=1
Ý β
(
( Y i X i)− ∑ ( X i )= 1 X́ ∑ ( X i ) + ∑ ( X 2i )
n i=1 n i =1 i=1
)
n n
1

n i=1
( Y i X i)−Ý X́ = ^
1
(
β 1 X́ 2 + ∑ ( X 2i )
n i=1 )
n
1
∑ (Y i−Ý )( X i− X́ ) n−1 s xy sample covariance
^
β 1= i=1 × = 2=
n
2 1 S x sample variance of x
∑ ( X i− X́ ) n−1
i=1



Residuals, the estimates of the unknown error terms
u^i=Y i −Y^i

Measures of fit
 R2 , measures the fraction of the variance of Y that is explained by X. It is unitless and ranges
between zero (no fit) and one (perfect fit). For a regression with a single X, the R squared equals the
square of the correlation coefficient between X and Y.

Y i=Y^i + u^i
s Y =sY^ +s u^ → s=sample variance
Total SS=Explained SS + Residual SS
n 2

ESS RSS i=1
∑ (Y^ i−Y^´ )
R2= =1− = n
TSS TSS 2
∑ (Y i−Ý )
i=1


Prove:
STEP 1
We assume the residuals in the linear regression model and the regressor values X i are orthogonal, which
means:
n

∑ u^i X i=0
i=1
This we can prove the following way

, X i − X́
u^i (¿)
n n

∑ u^i X i=∑ ¿
i=1 i=1
We also know
u^i=Y i − ^
β 0− ^
β 1 X i =Y i−( Ý − ^
β 1 X́ )− β^1 X i=( Y i−Ý ) − ^
β 1( X i− X́ )
Putting this in the function above we get
X i− X́
X i− X́
n
2
( Y i−Ý ) (¿)− β^11 ∑ ( X i− X́ )
i=1
n
( ( Y i− Ý )− β^1 ( X i− X́ ))( ¿)=∑ ¿
i=1
n

∑¿
i=1
X i− X́
( Y i−Ý ) (¿)
n n
^
β 1 ∑ ( X i− X́ ) =∑ ¿
i=1 i=1
s s xy
^
β 1= =^
β1
s2x
Which proves the assumption that the regressors and the residuals are orthogonal.

STEP 2




STEP 3
Prove
n n n

∑ u^i ( Y^i −Ý )=∑ u^i Y^i −Ý ∑ u^i
i=1 i=1 i =1
We know the summations of the residuals are equal to zero because the mean is equal to zero. So the formula
becomes:
n n
u^i (¿ ^
β0 + ^
β 1 X i )= β^0 ∑ u^i + ^
β 1 ∑ u^i X I =0
i=1 i=1
n

∑¿
i=1




R2 can be zero because of two reasons:
- ^
β 1=0 which makes the intercept equal to the average of Y, which leads to a SSE of 0
- X is a constant, which means that the variance of X is zero. This leads to a ^
β 1 that is
undefined.
$8.38
Get access to the full document:
Purchased by 8 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 4 reviews
1 year ago

11 months ago

6 year ago

7 year ago

4.0

4 reviews

5
1
4
2
3
1
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
wandykalk Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
80
Member since
8 year
Number of followers
55
Documents
17
Last sold
1 year ago

3.9

19 reviews

5
3
4
12
3
4
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions