100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary RMC including how to do it in R

Rating
-
Sold
-
Pages
78
Uploaded on
29-10-2023
Written in
2023/2024

Master Research Methods based on the course in 2023. My summary covers lectures, literature, and R instructions

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
October 29, 2023
Number of pages
78
Written in
2023/2024
Type
Summary

Subjects

Content preview

Inhoudsopgave

Midterm week 1 ............................................................................................................................................... 5

Chapter 2: The Simple Regression Model ........................................................................................................... 5
2.1 Scatterplots and conditional distributions ..................................................................................................... 5
2.1.1. Scatterplots .......................................................................................................................................... 5
2.1.2. A line through conditional means ........................................................................................................ 5
2.1.3 Errors of Estimate ................................................................................................................................. 5
2.2 The Simple regression model ........................................................................................................................ 5
2.2.1. The Regression Line ............................................................................................................................. 5
2.2.2. Variance, Covariance, and correlation ................................................................................................. 5
2.2.3 Finding the Regression Line .................................................................................................................. 6
2.2.4. Example computations......................................................................................................................... 6
2.2.5. Linear regression analysis by computer ............................................................................................... 6
2.3 The regression coefficient versus the correlation coefficient ......................................................................... 6
2.3.1. Properties of the Regression and Correlation Coefficients .................................................................. 6
2.3.2. Uses of the regression and correlation coefficients ............................................................................. 7
2.4 Residuals ....................................................................................................................................................... 7
2.4.1 The three components of Y ................................................................................................................... 7
2.4.2. Algebraic properties of residuals.......................................................................................................... 7
2.4.3. Residuals as Y adjusted for differences in X ......................................................................................... 7
2.4.4. Residual analysis .................................................................................................................................. 7

Chapter 3: Partial Relationship and the Multiple Regression Model .................................................................... 8
3.1. Regression analysis with more than one predictor variable ......................................................................... 8
3.1.1. An Example .......................................................................................................................................... 8
3.1.2. Regressors ............................................................................................................................................ 8
3.1.3. Models ................................................................................................................................................. 8
3.1.4. Representing a model geometrically .................................................................................................... 8
3.1.5. Model errors ........................................................................................................................................ 8
3.1.6. An alternative view of the model ......................................................................................................... 8
3.2. The Best-Fitting Model ................................................................................................................................. 8
3.2.1. Model estimation with Computer Software ......................................................................................... 8
3.2.2. Partial regression coefficients .............................................................................................................. 8
3.2.3. The regression constant ....................................................................................................................... 8
3.2.4. Problems with three or more regressors ............................................................................................. 8
3.2.5. The multiple correlation R .................................................................................................................... 8
3.3.3. The standardized regression coefficient .............................................................................................. 8
4.2 The ANOVA summary table........................................................................................................................... 8
4.2.1. Data = model + error ............................................................................................................................ 8
4.2.2. Total and regression sums of squares .................................................................................................. 8
4.2.3. Degrees of Freedom .................................................................................................................................. 9
4.2.4. Mean squares ......................................................................................................................................... 10
4.3 Inference about the multiple correlation..................................................................................................... 11
4.3.1 Biased and less biased estimation of Rsquared................................................................................... 11
4.2.3 Testing a hypothesis about tR ............................................................................................................. 11

Installing & loading packages ......................................................................................................................... 13

,How to… ......................................................................................................................................................... 13
Adding a Column to Your Datafile: .................................................................................................................... 13
Manually Calculating the Mean: ....................................................................................................................... 13
Manually Calculating the Predicted Mean: ....................................................................................................... 13
Manually Calculating the Residual: ................................................................................................................... 13
Manually Calculating the Mean Residual: ......................................................................................................... 13
Manually Calculating the Squared Residuals: ................................................................................................... 13
Manually Calculating the Mean Squared Residual: ........................................................................................... 13
Manually Calculating SSE (Sum of Squared Residuals): ..................................................................................... 13
Manually Calculating TSS (Total Sum of Squares): ............................................................................................ 14
Manually Calculating RSS (Regression Sum of Squares): ................................................................................... 14
Manually Calculating R-squared (R2): ............................................................................................................... 14
Manually calculating the F-statistic .................................................................................................................. 14

Midterm week 2 ............................................................................................................................................. 16

Installing & loading packages ......................................................................................................................... 16

How to… ......................................................................................................................................................... 16
Assumptions ..................................................................................................................................................... 16

Chapter 4: ...................................................................................................................................................... 18
4.1.2. Assumptions for Proper Inference ..................................................................................................... 18
4.4. The Distribution of and Inference about a partial regression coefficient .................................................. 18
4.4.1 Testing a Null hypothesis about Tb ..................................................................................................... 18
4.4.2 Interval Estimates for Tb ..................................................................................................................... 18
4.4.3 Factors Affecting the Standard Error of b ........................................................................................... 19
4.4.4 Tolerance ............................................................................................................................................ 19
4.7 Miscellaneous Issues in Inference ............................................................................................................... 21
4.7.1 How Great a Drawback is Collinearity? ............................................................................................... 21
4.7.2 Contradicting Inferences ..................................................................................................................... 21
4.7.3 Sample Size and Nonsignificant Covariates ........................................................................................ 21
4.7.4 Inference in Simple Regression (when k=1) ........................................................................................ 22

Chapter 5: Extending Regression Analysis Principles ...................................................................................... 22
5.1 Dichotomous regressors ............................................................................................................................. 22
5.1.1 Indicator or dummy variables ............................................................................................................. 22
5.1.2 Estimates of Y are Group Means......................................................................................................... 22
5.1.3. The regression coefficitien for an indicator is a Difference ................................................................ 22
5.1.4 A graphic representation .................................................................................................................... 22
5.1.5 A Caution About Standardized Regression Coefficients For Dichotomous Regressors ....................... 22
5.1.6 Artificial categorization of numerical variables................................................................................... 23

Chapter 7: ...................................................................................................................................................... 23
7.3 Selection Predictor Variables ...................................................................................................................... 23
7.3.1. Stepwise regression ........................................................................................................................... 23
7.3.2. All subsets regression ........................................................................................................................ 24
7.3.3 How Do Variable Selection Methods Perform? .................................................................................. 24

,Chapter 8: Assessing The Importance Of Regressors....................................................................................... 24
8.1 What Does It Mean For A Variable To Be Important? ................................................................................. 24
8.1.1. Variable Importance in Substantive or Applied Terms ....................................................................... 24
8.1.2. Variable Importance in Statistical Terms ............................................................................................ 24
8.3 Determining the Relative Importance of Regressors in a Single Regression Model .................................... 25
8.3.1 The Limitations of the Standardized Regression Coefficient .............................................................. 25
8.3.2 The Advantage of the Semipartial Correlation ................................................................................... 25
8.3.3. Some Equivalences among measures ................................................................................................ 25
8.3.4. Eta-Squared, Partial Eta-Squared, and Cohen’s f-Squared ................................................................. 26
8.3.5. Comparing Two Regression Coefficients in the Same Model ............................................................ 27

Chapter 9: Multicategorical Regressors .......................................................................................................... 28
9.1. Multicategorical variables as sets ............................................................................................................. 28
9.1.1. Indicator coding ................................................................................................................................. 28
9.1.2. Constructing Indicator Variables ........................................................................................................ 28
9.1.3. The Reference Category ..................................................................................................................... 28
9.1.4. Testing the equality of several means................................................................................................ 29
9.1.5. Parallels with Analysis of Variance ..................................................................................................... 29
9.1.6. Interpreting Estimated Y and the Regression Coefficients ................................................................. 29
9.2 Multicategorical regressors as or with covariates ...................................................................................... 29
9.2.1 Multicategorical Variables as Covariates ............................................................................................ 29
9.2.2 Comparing Groups and Statistical Control .......................................................................................... 29
9.2.3 Interpretation of regression coefficients ............................................................................................ 30
9.2.4. Adjusted Means ................................................................................................................................. 30
9.2.5. Parallels with ANCOVA ....................................................................................................................... 30
9.2.6. More Than One Covariate.................................................................................................................. 30

Chapter 16: Detecting and Managing Irregularities ........................................................................................ 30
16.1 Regression diagnostics ............................................................................................................................. 30
16.1.1. Shortcomings of eyeballing the Data ............................................................................................... 30
16.1.2. Types of Extreme Cases ................................................................................................................... 30
16.1.3 Quantifying leverage, distance, and influence .................................................................................. 30

Midterm week 3 ............................................................................................................................................. 32

Theorie ........................................................................................................................................................... 32
Difference correlation and causation ............................................................................................................... 32
Spurious effect .................................................................................................................................................. 32
Theory – Mediation .......................................................................................................................................... 32
Difference spurious effect & mediation effect .................................................................................................. 33
Different types of methods to test mediation ................................................................................................... 34
Baron & Kenny ............................................................................................................................................. 34
How to calculate mediation: ........................................................................................................................ 34
Sobeltest ...................................................................................................................................................... 35
Bootstrap ..................................................................................................................................................... 35
Bootstrapping and Confidence Intervals for Effect Sizes: ............................................................................ 36
Different Effect Size Metrics:........................................................................................................................ 36
Relative Effect Sizes:..................................................................................................................................... 37
Stability and Sample Size: ............................................................................................................................ 37
𝑅² (Proportion of Variance Explained by Indirect Effect): ............................................................................ 37
Evaluation of methods ...................................................................................................................................... 38

, Midterm week 4 ............................................................................................................................................. 39

Theory ............................................................................................................................................................ 39
Moderation:...................................................................................................................................................... 39
Significance Testing: ......................................................................................................................................... 39
Modeling with Interaction: ............................................................................................................................... 40

Moderation with the PROCESS function ......................................................................................................... 40
Moderation with the PROCESS function - Interpretation .................................................................................. 40

Moderation through hierarchical regression analysis ..................................................................................... 41

Visualization ................................................................................................................................................... 41
Plotting Regression Coefficients: ...................................................................................................................... 41
Plotting Conditional Effects:.............................................................................................................................. 41
Using Johnson-Neyman Plot: ............................................................................................................................ 42

The four primary levels of measurement........................................................................................................ 43

Open question example answer ..................................................................................................................... 44

Midterm week 5 ............................................................................................................................................. 45
Analysis of Variance (ANOVA)........................................................................................................................... 45
Assumptions ..................................................................................................................................................... 46
Contrasts .......................................................................................................................................................... 47
Choosing Contrasts in ANOVA ..................................................................................................................... 47
Additional Testing Approaches .................................................................................................................... 47
Splitting the Variance ................................................................................................................................... 48
Non-Orthogonal Contrasts........................................................................................................................... 48
Post-Hoc Tests and Corrections ................................................................................................................... 48
Variance ............................................................................................................................................................ 49
Mean squares & F-test ..................................................................................................................................... 51
Effect sizes ........................................................................................................................................................ 52
Marginal vs. Estimated marginal means .......................................................................................................... 52

Midterm week 6 ............................................................................................................................................. 53

16.2 When to use MANOVA ........................................................................................................................... 53

Slides:............................................................................................................................................................. 60

Plot uitleg ....................................................................................................................................................... 66

Tutorial........................................................................................................................................................... 69
$7.78
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
maraoltmans1
3.0
(1)

Get to know the seller

Seller avatar
maraoltmans1 Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
3
Member since
2 year
Number of followers
1
Documents
5
Last sold
1 year ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions