100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Introduction to Multivariate Statistics - FEB22003X

Rating
-
Sold
-
Pages
70
Uploaded on
24-10-2023
Written in
2023/2024

Since the Introduction to Multivariate Statistics (FEB22003X) is an open book exam, this summary note can help a lot. It contains all the tutorial solutions + intuition behind the contents.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
Yes
Uploaded on
October 24, 2023
Number of pages
70
Written in
2023/2024
Type
Summary

Subjects

Content preview

Multivariate Statistics

Hyunmin Hong

October 18, 2023




1

,Contents
1 Lecture 1 4
1.1 Distance & Statistical Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Statistical Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Lecture 2 6
2.1 Random Vectors & Random Matrices . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Linear Combination of Random Vectors . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Univariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Multivariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Lecture 3 8
3.1 Geometry of a Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Geometric Interpretation of Average . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 Deviation Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Estimation of µ & Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Lecture 4 12
4.1 Generalized Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.1 Generalized Variance in p dimensions . . . . . . . . . . . . . . . . . . 13
4.2 Geometric Interpretation of Statistical Distance . . . . . . . . . . . . . . . . . 14
4.3 Geometric Intuition of Covariance Matrix . . . . . . . . . . . . . . . . . . . . 15

5 Lecture 5 16
5.1 Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.1 Properties of Multivariate Normal Distribution . . . . . . . . . . . . . 17

6 Lecture 6 22
6.1 Estimation (by Maximum Likelihood) . . . . . . . . . . . . . . . . . . . . . . 22
6.1.1 Maximum Likelihood Estimates . . . . . . . . . . . . . . . . . . . . . . 22

7 Lecture 7 23
7.1 MLE of Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . 23
7.1.1 Remarks about MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.2 What is the distribution of µ̂M LE & Σ̂M LE ? . . . . . . . . . . . . . . 26

8 Lecture 8 27
8.1 Asymptotic Behavior of µ̂M LE & Σ̂M LE . . . . . . . . . . . . . . . . . . . . . 27
8.2 Data Inspection and Distributional Assumptions Check . . . . . . . . . . . . 27
8.2.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.3 Multivariate Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.3.1 Univariate Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.3.2 Multivariate Tests (of location, µ) . . . . . . . . . . . . . . . . . . . . 29

9 Lecture 9 30
9.1 Invariance Property of Hotelling’s T 2 . . . . . . . . . . . . . . . . . . . . . . . 30
9.2 Likelihood Ratio Tests (LRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.3 Equivalence of Hotelling’s T 2 & Wilks’ Lambda . . . . . . . . . . . . . . . . . 32

10 Lecture 10 33
10.1 Confidence Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



2

, 10.2 Simultaneously Valid Confidence Intervals . . . . . . . . . . . . . . . . . . . . 33
10.2.1 Correction for Simultaneous Validity . . . . . . . . . . . . . . . . . . . 34
10.2.2 Simultaneously Valid Individual Confidence Intervals . . . . . . . . . . 34
10.3 Bonferroni Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.4 Asymptotic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11 Lecture 11 37
11.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11.1.1 Properties & Interpretation of principal components . . . . . . . . . . 38

12 Lecture 12 40
12.1 Principal Component Analysis (continued) . . . . . . . . . . . . . . . . . . . . 40
12.1.1 Principal components are not scale invariant . . . . . . . . . . . . . . 40
12.1.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.1.3 How many principal components to retain? . . . . . . . . . . . . . . . 42
12.2 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

13 Lecture 13 44
13.1 Factor Analysis (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
13.1.1 Estimation of L & Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13.1.2 Estimation of Factor Scores . . . . . . . . . . . . . . . . . . . . . . . . 46
13.1.3 How to choose # of factors? . . . . . . . . . . . . . . . . . . . . . . . . 47




3

, 1 Lecture 1
1.1 Distance & Statistical Distance
Definition 1.1. Distance is a function defined on M .

d(x, y) : M × M → R

such that
a) d(x, y) ≥ 0, d(x, y) = 0 if x = y.
b) d(x, y) = d(y, x) (symmetry)
c) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)
Example 1.1 (Euclidean distance).
p
d(x, y) = (x1 − y1 )2 + (x2 − y2 )2


Example 1.2 (Manhattan distance).

d(x, y) = |x1 − y1 | + |x2 − y2 |



1.2 Statistical Distance




Intuition. You might think that the red square is more extreme from the mean value
than blue square since it does not fall within the cloud of points. However, their Euclidean
distances are equal. Hence, we must take the variance into account when the cloud of
points is distributed in ellipse shape.




4
$7.18
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
hyunminhong

Get to know the seller

Seller avatar
hyunminhong Erasmus Universiteit Rotterdam
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
1
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions