100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Uitwerkingen week 8 | Fundamenten van de wiskunde

Rating
-
Sold
-
Pages
1
Uploaded on
21-10-2023
Written in
2023/2024

Inleveropgave uitwerkingen

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
October 21, 2023
Number of pages
1
Written in
2023/2024
Type
Summary

Subjects

Content preview

Fundamenten uitwerkingen inleveropgave week 8

19 november 2021


Inleveropgave:

Gegeven en te bewijzen opschrijven: 1pt

Gegeven: de rij (an )n∈N gedefinieerd door a1 = 1, a2 = 1 en an + 2 = an+1 + an voor
n ∈ N.

Te bewijzen (via volledige inductie): ggd(an+1 , an ) = 1 voor n ∈ N.

Bewijs. .
Een inductiebegin geven : 1pt, ook juist uitvoeren: 1pt (totaal 2pt).

Als inductiebegin moeten we aantonen dat ggd(a2 , a1 ) = 1.
Aangezien ggd(a2 , a1 ) =ggd(1, 1) = 1 geldt inderdaad dat de stelling waar is voor n = 1.
Voor n = 2 merken we op dat ggd(a3 , a2 ) =ggd(2, 1) = 1.

Een correcte inductiehypothese geven : 1,5pt.

We nemen nu aan dat voor n = k met een vaste, doch willekeurige k ∈ N≥2 , er geldt dat
ggd(ak+1 , ak ) = 1.

Inductiestap : 4pt

We bekijken nu ggd(ak+2 , ak+1 ) =ggd(ak+1 +ak , ak+1 ). We merken op dat rest van ak+1 +ak na
deling door ak+1 gelijk is aan ak dit aangezien ak+1 > ak (hierom hebben we ook het geval n =
2 apart bekeken en k ∈ N≥2 genomen). Dus geeft Lemma V.3.6 dat ggd(ak+2 , ak+1 ) =ggd(ak+1 +
ak , ak+1 ) = ggd(ak+1 , ak ). Uit de inductiehypothese volgt ggd(ak+2 , ak+1 ) = ggd(ak+1 , ak ) =
1.
Daarmee is de stelling ook waar voor n = k + 1.

Uiteindelijke conclusie geven en benoemen dat deze uit inductie volgt : 1,5pt.

Uit inductie volgt nu dat ggd(an+1 , an ) = 1 voor elke n ∈ N.




1

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
marjavdwind Erasmus Universiteit Rotterdam
Follow You need to be logged in order to follow users or courses
Sold
120
Member since
5 year
Number of followers
87
Documents
185
Last sold
3 weeks ago
Boekverslagen Econometrie @EUR

Ik ben Marja en heb econometrie aan de Erasmus Universiteit Rotterdam gestudeerd. Inmiddels ben ik klaar met de opleiding en upload ik vooral nog boekverslagen. Ik zit namelijk al meer dan 6 jaar op een leeskring waar we recente Nederlandstalige literatuur lezen. Ik probeer boekverslagen te maken van boeken die net nieuw zijn en dus nog weinig verslagen hebben.

4.1

14 reviews

5
9
4
1
3
2
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions