100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary: Cognitive Science, Third Edition, Chapters 7-13

Rating
4.3
(7)
Sold
34
Pages
31
Uploaded on
28-10-2017
Written in
2017/2018

A summary of chapters 7-13 of the book 'Cognitive Science, an introduction to the study of mind', Third Edition. Part of the course Artificial Intelligence at Utrecht University. The Network Approach - The Evolutionary Approach - The Linguistic Approach - The Emotional Approach - The Social Approach - The Artificial Intelligence Approach - Intelligent Agents and Robots

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
7, 8, 9, 10, 11, 12, 13
Uploaded on
October 28, 2017
Number of pages
31
Written in
2017/2018
Type
Summary

Subjects

Content preview

7.​ ​The​ ​Network​ ​Approach

Influenced​ ​by​ ​the​ ​principles​ ​of​ ​operation​ ​and​ ​organization​ ​of​ ​real-world​ ​brains.
Connectionism​​ ​tries​ ​to​ ​understand​ ​how​ ​the​ ​mind​ ​performs​ ​certain​ ​kinds​ ​of​ ​operations​ ​via
the​ ​construction​ ​of​ ​an​ ​artificial​ ​neural​ ​network​ ​(ANN)​​ ​-​ ​a​ ​computer​ ​simulation​ ​of​ ​how
populations​ ​of​ ​actual​ ​neurons​ ​perform​ ​tasks.

Artificial​ ​Neural​ ​Networks
Traditional​ ​computers​ ​are​ ​serial​ ​processors​:​ ​perform​ ​one​ ​computation​ ​at​ ​a​ ​time.​ ​The​ ​brain,
as​ ​well​ ​as​ ​ANNs,​ ​are​ ​parallel​ ​distributed​ ​processors​:​ ​large​ ​numbers​ ​of​ ​computing​ ​units
perform​ ​their​ ​calculations​ ​in​ ​parallel.​ ​Knowledge-based​ ​approach​:​ ​One​ ​conceptualizes​ ​the
problem​ ​and​ ​its​ ​solution​ ​in​ ​terms​ ​of​ ​symbols​ ​and​ ​transformations​ ​on​ ​the​ ​symbols​ ​(used​ ​a​ ​lot
in​ ​AI).​ ​Behavior-based​ ​approach​:​ ​A​ ​network​ ​is​ ​allowed​ ​to​ ​produce​ ​a​ ​solution​ ​on​ ​its​ ​own.
This​ ​does​ ​not​ ​involve​ ​the​ ​use​ ​of​ ​symbols​ ​(ANNs).​ ​Representations​ ​are​ ​inherent​ ​in​ ​ANNs​ ​but
do​ ​not​ ​exist​ ​in​ ​them​ ​in​ ​the​ ​form​ ​of​ ​symbols.​ ​They​ ​exist​ ​in​ ​most​ ​networks​ ​as​ ​a​ ​pattern​ ​of
activation​ ​among​ ​the​ ​network’s​ ​elements​ ​-​ ​distributed​ ​representation​.​ ​Local
representation​:​ ​in​ ​the​ ​form​ ​of​ ​activation​ ​in​ ​a​ ​single​ ​node​ ​in​ ​a​ ​network.
Pro:​​ ​They​ ​are​ ​capable​ ​of​ ​learning​ ​—>​ ​adaptively​ ​change​ ​their​ ​responses​ ​over​ ​time​ ​as​ ​they
are​ ​presented​ ​with​ ​new​ ​information​ ​(but​ ​also​ ​possible​ ​in​ ​machines​ ​that​ ​use​ ​symbolic
methods).

Characteristics​ ​of​ ​ANNs:
● Only​ ​exist​ ​as​ ​software​ ​simulations​ ​that​ ​are​ ​run​ ​on​ ​a​ ​computer
● Each​ ​neuron​ ​is​ ​represented​ ​as​ ​a​ ​node​,​ ​and​ ​the​ ​connections​ ​between​ ​nodes​ ​are
represented​ ​as​ ​links​.
● Signal​ ​node:​ ​activation​ ​value​ ​—>​ ​runs​ ​along​ ​the​ ​link​ ​that​ ​connects​ ​it​ ​to​ ​another
node(s)
● Input​ ​>​ ​threshold​ ​value​ ​—>​ ​fire
● Links​ ​have​ ​weights​:​ ​specify​ ​the​ ​strength​ ​of​ ​a​ ​link.​ ​Higher​ ​value,​ ​higher​ ​weight.

Early​ ​conceptions​ ​of​ ​Neural​ ​Networks
First​ ​researchers​ ​to​ ​propose​ ​how​ ​biological​ ​networks​ ​might​ ​function:​ ​McCulloch​ ​and​ ​Pitts,
1943.​ ​They​ ​assumed​ ​each​ ​neuron​ ​had​ ​a​ ​binary​ ​output,​ ​it​ ​could​ ​either​ ​send​ ​out​ ​a​ ​signal​ ​or
not​ ​send​ ​out​ ​a​ ​signal.​ ​Donald​ ​O.​ ​Hebb​ ​(1949)​ ​was​ ​the​ ​first​ ​to​ ​propose​ ​how​ ​changes​ ​among
neurons​ ​might​ ​explain​ ​learning​ ​—>​ ​Hebb​ ​rule:​ ​when​ ​one​ ​cell​ ​repeatedly​ ​activates​ ​another,
the​ ​strength​ ​of​ ​the​ ​connection​ ​between​ ​two​ ​cells​ ​is​ ​increased.​ ​He​ ​defined​ ​2​ ​types​ ​of​ ​cell
groupings:
1. Cell​ ​assembly:​​ ​a​ ​small​ ​group​ ​of​ ​neurons​ ​that​ ​repeatedly​ ​stimulate​ ​one​ ​another
2. Phase​ ​sequence:​​ ​a​ ​group​ ​of​ ​connected​ ​cell​ ​assemblies​ ​that​ ​fire​ ​synchronously​ ​or
nearly​ ​synchronously
Rosenblatt​ ​introduced​ ​in​ ​1958​ ​the​ ​perceptron​:​ ​neural​ ​nets​ ​designed​ ​to​ ​detect​ ​and​ ​recognize
patterned​ ​information​ ​about​ ​the​ ​world,​ ​store​ ​this​ ​information,​ ​and​ ​use​ ​it​ ​in​ ​some​ ​fashion.
They​ ​also​ ​learn​ ​from​ ​experience:​ ​can​ ​modify​ ​their​ ​connection​ ​strengths​ ​by​ ​comparing​ ​their
actual​ ​output​ ​with​ ​a​ ​desired​ ​output​ ​called​ ​the​ ​teacher​.

Back​ ​Propagation​ ​and​ ​Convergent​ ​Dynamics

,Three​ ​layer​ ​network:
1. Input​ ​layer​​ ​-​ ​a​ ​representation​ ​of​ ​the​ ​stimulus​ ​is​ ​presented
2. Hidden​ ​layer​​ ​-​ ​feeds​ ​activation​ ​energy​ ​to​ ​an​ ​output​ ​layer
3. Output​ ​layer​​ ​-​ ​generates​ ​a​ ​representation​ ​of​ ​the​ ​response
Error​ ​signal:​​ ​the​ ​difference​ ​between​ ​the​ ​actual​ ​and​ ​the​ ​desired​ ​outputs.​ ​The​ ​network​ ​uses
the​ ​error​ ​signal​ ​to​ ​modify​ ​the​ ​weights​ ​of​ ​the​ ​links.​ ​The​ ​kind​ ​of​ ​training​ ​based​ ​on​ ​error
feedback​ ​is​ ​called​ ​the​ ​generalized​ ​delta​ ​rule​​ ​or​ ​the​ ​back-propagation​​ ​learning​ ​model.

NETtalk​​ ​Is​ ​an​ ​ANN​ ​designed​ ​to​ ​read​ ​written​ ​English.​ ​Presented​ ​written​ ​letters​ ​—>
pronounces​ ​them​ ​—>​ ​fed​ ​to​ ​a​ ​speech​ ​synthesizer​ ​for​ ​the​ ​production​ ​of​ ​the​ ​sounds.​ ​System
consists​ ​of​ ​3​ ​layers.

Connectionist​ ​Approach:
Pro​:
● The​ ​similarity​ ​between​ ​network​ ​models​ ​and​ ​real-life​ ​neural​ ​networks:​ b ​ iological
plausibility​.
○ Artificial​ ​Networks​ ​share​ ​general​ ​structural​ ​and​ ​functional​ ​correlates​ ​with
biological​ ​networks
○ Artificial​ ​networks​ ​are​ ​capable​ ​of​ ​learning
○ Artificial​ ​networks​ ​react​ ​to​ ​damage​ ​in​ ​the​ ​same​ ​way​ ​that​ ​human​ ​brains​ ​do:
neural​ ​networks​ ​demonstrate​ ​graceful​ ​degradation​​ ​-​ ​gradual​ ​decrease​ ​in
performance​ ​with​ ​increased​ ​damage​ ​to​ ​the​ ​network.​ ​Small​ ​amounts​ ​of
damage​ ​—>​ ​small​ ​reductions​ ​in​ ​performance.
● Displays​ ​interference​​ ​(2​ ​sets​ ​of​ ​information​ ​are​ ​similar​ ​in​ ​content​ ​and​ ​interfere​ ​with
each​ ​other)​ ​and​ ​generalization​​ ​(represented​ ​by​ ​the​ ​ability​ ​to​ ​apply​ ​a​ ​learned​ ​rule​ ​to
a​ ​novel​ ​situation)
Con​:
● Biological​ ​plausibility​ ​should​ ​also​ ​be​ ​viewed​ ​as​ ​problematic
○ Real​ ​neurons​ ​are​ ​massively​ ​parallel,​ ​it​ ​is​ ​not​ ​yet​ ​possible​ ​to​ ​simulate​ ​parallel
processing​ ​of​ ​this​ ​magnitude.
○ Most​ ​networks​ ​show​ ​a​ ​convergent​ ​dynamics​​ ​approach,​ ​the​ ​activity​ ​of​ ​such​ ​a
network​ ​eventually​ ​dies​ ​down​ ​and​ ​reaches​ ​a​ ​stable​ ​state.​ ​This​ ​is​ ​not​ ​the​ ​case
for​ ​brain​ ​activity.​ ​Real​ ​neural​ ​networks​ ​are​ ​oscillatory​ ​and​ ​chaotic.
● Networks​ ​may​ ​have​ ​inadequate​ ​learning​ ​rules
○ Stability-plasticity​ ​dilemma​:​ ​states​ ​that​ ​a​ ​network​ ​should​ ​be​ ​plastic​ ​enough
to​ ​store​ ​novel​ ​input​ ​patterns;​ ​at​ ​the​ ​same​ ​time,​ ​it​ ​should​ ​be​ ​stable​ ​enough​ ​to
prevent​ ​previously​ ​encoded​ ​patterns​ ​form​ ​being​ ​erased.​ ​The​ ​fact​ ​that​ ​ANNs
show​ ​evidence​ ​of​ ​being​ ​caught​ ​in​ ​this​ ​dilemma​ ​is​ ​useful​ ​because​ ​it​ ​may​ ​offer
some​ ​insights​ ​into​ ​human​ ​interference.
○ Catastrophic​ ​interference:​​ ​occurs​ ​in​ ​instances​ ​in​ ​which​ ​a​ ​network​ ​has
learned​ ​to​ ​recognize​ ​a​ ​set​ ​of​ ​patterns​ ​and​ ​then​ ​is​ ​called​ ​on​ ​to​ ​learn​ ​a​ ​new​ ​set.
The​ ​newly​ ​learned​ ​patterns​ ​suddenly​ ​and​ ​completely​ ​erase​ ​the​ ​network’s
memory​ ​of​ ​the​ ​original​ ​patterns.
○ In​ ​supervised​ ​networks​,​ ​a​ ​“teacher”​ ​is​ ​necessary​ ​for​ ​the​ ​network​ ​to​ ​learn.
But​ ​where​ ​does​ ​this​ ​teacher​ ​come​ ​from?

,Semantic​ ​Networks
In​ ​semantic​ ​networks​​ ​each​ ​node​ ​has​ ​a​ ​specific​ ​meaning​ ​and,​ ​therefore,​ ​employs​ ​local
representation​ ​of​ ​concepts.​ ​Has​ ​been​ ​adopted​ ​by​ ​cognitive​ ​psychologists​ ​as​ ​a​ ​way​ ​to
explain​ ​the​ ​organization​ ​and​ ​retrieval​ ​of​ ​information​ ​in​ ​long-term​ ​memory.

Characteristics​ ​of​ ​Semantic​ ​Networks:
● A​ ​node’s​ ​activity​ ​can​ ​spread​ ​outward​ ​along​ ​links​ ​to​ ​activate​ ​other​ ​nodes,​ ​these​ ​nodes
can​ ​then​ ​activate​ ​still​ ​others:​ ​spreading​ ​activation​.​ ​Is​ ​thought​ ​to​ ​underlie​ ​retrieval​ ​of
information​ ​from​ ​long-term​ ​memory.​ ​Alternate​ ​associations​ ​that​ ​facilitate​ ​recall​ ​are
also​ ​called​ ​retrieval​ ​cues​.
● The​ ​distance​ ​between​ ​two​ ​nodes​ ​is​ ​determined​ ​by​ ​their​ ​degree​ ​of​ ​relatedness.
● Priming​:​ ​the​ ​processing​ ​of​ ​a​ ​stimulus​ ​is​ ​facilitated​ ​by​ ​the​ ​network’s​ ​prior​ ​exposure​ ​to
a​ ​related​ ​stimulus.

Hierarchical​ ​Semantic​ ​Network
Study​ ​by​ ​Collins​ ​and​ ​Quillian​ ​suggests​ ​that​ ​semantic​ ​networks​ ​may​ ​have​ ​a​ h ​ ierarchical
organization​,​ ​with​ ​different​ ​levels​ ​representing​ ​concepts​ ​ranging​ ​from​ ​the​ ​most​ ​abstract
down​ ​to​ ​the​ ​most​ ​concrete.​ ​They​ ​used​ ​a​ ​sentence​ ​verification​​ ​task.
1. Superordinate​​ ​category:​ ​animals​ ​—>​ ​eat​ ​food,​ ​breathe
2. Ordinate​​ ​categories:​ ​birds,​ ​cats​ ​—>​ ​can​ ​fly,​ ​purr
3. Subordinate​​ ​categories:​ ​Canary,​ ​Alleycat​ ​—>​ ​can​ ​sing,​ ​is​ ​yellow
A​ ​canary​ ​is​ ​an​ ​animal​ ​—>​ ​longer​ ​reaction​ ​time​ ​than​ ​‘A​ ​canary​ ​is​ ​a​ ​bird/a​ ​canary’
“isa”​ ​and​ ​“has​ ​a”​ ​link,​​ ​bird​ ​“isa”​ ​animal,​ ​bird​ ​“hasa"​ ​feathers
Con​:
● Concepts​ ​may​ ​be​ ​represented​ ​by​ ​prototypes​​ ​that​ ​represent​ ​generic​ ​or​ ​idealized
versions​ ​of​ ​those​ ​concepts.
● Principle​ ​of​ ​cognitive​ ​economy​:​ ​nodes​ ​should​ ​not​ ​have​ ​to​ ​be​ ​coded​ ​for​ ​more​ ​times
than​ ​is​ ​necessary.​ ​Seems​ ​to​ ​work​ ​better​ ​in​ ​principle​ ​than​ ​in​ ​reality.

Propositional​ ​Semantic​ ​Networks
ACT*​ ​is​ ​a​ ​hybrid​ ​model​:​ ​it​ ​specifies​ ​how​ ​multiple​ ​memory​ ​systems​ ​interact​ ​and​ ​how​ ​explicit
knowledge​ ​is​ ​represented.​ ​A​ ​proposition​ ​is​ ​the​ ​smallest​ ​unit​ ​of​ ​knowledge​ ​that​ ​can​ ​be
verified.​ ​Propositional​ ​networks​ ​allow​ ​for​ ​a​ ​greater​ ​variety​ ​of​ ​relationships​ ​among​ ​concepts.
An​ ​agent​ ​link​​ ​specifies​ ​the​ ​subject​ ​of​ ​the​ ​proposition,​ ​an​ ​object​ ​link​​ ​denotes​ ​the​ ​object​ ​or
thing​ ​to​ ​which​ ​the​ ​action​ ​is​ ​directed.​ ​The​ ​relation​ ​link​​ ​characterizes​ ​the​ ​relation​ ​between​ ​the
agent​ ​and​ ​the​ ​object.​ ​Anderson’s​ ​ACT*​ ​model​ ​can​ ​also​ ​account​ ​for​ ​the​ ​specific​ ​memories
each​ ​of​ ​us​ ​has​ ​as​ ​part​ ​of​ ​our​ ​experience.​ ​His​ ​model​ ​does​ ​this​ ​via​ ​its​ ​creation​ ​of​ ​2​ ​classes​ ​of
nodes:​ ​type​​ ​node;​ ​corresponds​ ​to​ ​an​ ​entire​ ​category​ ​(‘dogs’),​ t​ oken​​ ​nodes;​ ​correspond​ ​to
specific​ ​instances​ ​or​ ​specific​ ​items​ ​within​ ​a​ ​category​ ​(“Fido”).

Semantic​ ​Networks​ ​Evaluation:
Con​:
● T.O.T.​ ​phenomenon​:​ ​‘tip​ ​of​ ​the​ ​tongue’.​ ​Semantic​ ​Networks​ ​cannot​ ​easily​ ​explain
these​ ​sort​ ​of​ ​retrieval​ ​blocks.
● The​ ​opposite;​ ​the​ ​situation​ ​in​ ​which​ ​we​ ​can​ ​successfully​ ​retrieve​ ​an​ ​item​ ​from
memory​ ​despite​ ​the​ ​face​ ​that​ ​there​ ​are​ ​no​ ​close​ ​connections​ ​between​ ​retrieval​ ​cues

, and​ ​the​ ​target.​ ​Multiple​ ​links​ ​that​ ​radiate​ ​outward​ ​toward​ ​other​ ​nodes​ ​-​ ​a​ ​high​ d
​ egree
of​ ​fan​​ ​(eg​ ​water).
● Excessive​ ​activation​ ​—>​ ​solution:​ ​implementation​ ​of​ ​an​ ​inhibitory​ ​network.
● Reconstructive​ ​memory​:​ ​constitutes​ ​a​ ​separate​ ​process​ ​of​ ​retrieving​ ​items​ ​-​ ​one
that​ ​does​ ​not​ ​rely​ ​on​ ​spreading​ ​activation​ ​and​ ​the​ ​inherent,​ ​automatic​ ​characteristics
of​ ​the​ ​network.​ ​Guided​ ​search​​ ​-​ ​one​ ​governed​ ​by​ ​intelligence​ ​and​ ​reasoning​ ​(‘What
did​ ​you​ ​do​ ​on​ ​your​ ​birthday​ ​last​ ​year?’).

Network​ ​Science
Network​ ​science​:​ ​to​ ​explore​ ​the​ ​way​ ​in​ ​which​ ​complex​ ​networks​ ​operate.​ ​A​ ​network​ ​is
considered​ ​as​ ​any​ ​collection​ ​of​ ​interconnected​ ​and​ ​interacting​ ​parts.​ ​It’s​ ​interdisciplinary.
Contemporary​ ​network​ ​scientists​ ​additionally​ ​consider​ ​networks​ ​as​ ​dynamical​ ​systems​ ​that
are​ ​doing​ ​things.​ ​All​ ​networks​ ​share​ ​some​ ​universal​ ​mechanism​ ​of​ ​action.

Centrality
Issue​ ​of​ ​centrality​:​ ​how​ ​a​ ​network​ ​coordinates​ ​information.​ ​This​ ​can​ ​be​ ​accomplished
through​ ​a​ ​“leader”​ ​that​ ​receives​ ​information,​ ​evaluates​ ​it,​ ​and​ ​issues​ ​commands.​ ​Computers,
armies​ ​etc​ ​are​ ​systems​ ​of​ ​this​ ​kind.​ ​But​ ​the​ ​interesting​ ​case​ ​is​ ​how​ ​networks​ ​without​ ​any
such​ ​center​ ​achieve​ ​this​ ​kind​ ​of​ ​coordinated​ ​action.​ ​This​ ​question​ ​has​ ​particular​ ​relevance
for​ ​the​ ​human​ ​mind​ ​—>​ ​Cartesian​ ​theater​ ​and​ ​the​ ​homunculus​ ​problem.​ ​If​ ​we​ ​could​ ​figure
out​ ​the​ ​centrality​ ​issue,​ ​we​ ​might​ ​also​ ​determine​ ​the​ ​answer​ ​to​ ​the​ ​mystery​ ​of
consciousness.​ ​In​ ​some​ ​networks,​ ​coordinated​ ​global​ ​activity​ ​happens​ ​simply​ ​as​ ​a​ ​function
of​ ​spreading​ ​activation​ ​that​ ​disperses​ ​throughout​ ​the​ ​system​ ​quickly​ ​but​ ​which​ ​can​ ​arise
from​ ​any​ ​part​ ​of​ ​it.

Hierarchical​ ​Networks​ ​and​ ​the​ ​Brain
Connections​ ​in​ ​hierarchical​ ​networks​​ ​are​ ​organized​ ​in​ ​different​ ​levels.
1. Simple​ ​cells​:​ ​cells​ ​in​ ​the​ ​primary​ ​visual​ ​cortex​ ​that​ ​code​ ​for​ ​oriented​ ​line​ ​segments
2. Complex​ ​cells​:​ ​cells​ ​in​ ​the​ ​visual​ ​system​ ​that​ ​code​ ​for​ ​an​ ​oriented​ ​line​ ​segment
moving​ ​in​ ​a​ ​particular​ ​direction
3. Hypercomplex​ ​cells​:​ ​cells​ ​in​ ​the​ ​visual​ ​system​ ​that​ ​code​ ​for​ ​angles​ ​(two​ ​conjoined
oriented​ ​line​ ​segments)​ ​moving​ ​in​ ​a​ ​particular​ ​direction
If​ ​we​ ​extrapolate​ ​up​ ​in​ ​the​ ​hierarchy,​ ​we​ ​end​ ​up​ ​with​ ​cells​ ​in​ ​the​ ​highest​ ​layers​ ​that​ ​code​ ​for
large​ ​complex​ ​objects​ ​(“grandmother​ ​cells”).​ ​The​ ​hierarchy​ ​allows​ ​the​ ​visual​ ​system​ ​to
employ​ ​a​ ​“divide-and-conquer”​ ​strategy​ ​where​ ​it​ ​breaks​ ​down​ ​the​ ​complex​ ​visual​ ​image​ ​into
microscopic​ ​features​ ​and​ ​then​ ​assembles​ ​these​ ​features​ ​into​ ​parts​ ​and​ ​then​ ​wholes​ ​that​ ​can
be​ ​recognized.​ ​Communication​ ​between​ ​levels​ ​in​ ​hierarchies​ ​can​ ​allow​ ​for​ ​the​ ​resolution​ ​of
ambiguity​ ​in​ ​visual​ ​perception.​ ​Information​ ​in​ ​the​ ​visual​ ​system​ ​appears​ ​to​ ​travel​ ​in​ ​2
directions.​ ​It​ ​goes​ ​nog​ ​only​ ​in​ ​a​ ​feed-forward​ ​direction​ ​from​ ​the​ ​eye​ ​to​ ​the​ ​brain​ ​but​ ​also​ ​in​ ​a
feedback​ ​direction​ ​from​ ​higher​ ​brain​ ​centers​ ​to​ ​lower​ ​centers.

Small-World​ ​Networks:​​ ​We​ ​can​ ​define​ ​a​ ​small-world​ ​network​​ ​as​ ​any​ ​network​ ​where​ ​one
can​ ​get​ ​from​ ​any​ ​single​ ​point​ ​to​ ​any​ ​other​ ​point​ ​in​ ​only​ ​a​ ​small​ ​number​ ​of​ ​steps​ ​even​ ​though
the​ ​total​ ​number​ ​of​ ​elements​ ​may​ ​be​ ​exceedingly​ ​large.
Ordered​ ​and​ ​Random​ ​Connections:​ ​Random​ ​networks​​ ​are​ ​networks​ ​where​ ​the​ ​connections
are​ ​entirely​ ​local​ ​and​ ​can,​ ​therefore,​ ​be​ ​both​ ​short​ ​and​ ​long​ ​distance.​ ​In​ ​an​ o ​ rdered
$6.17
Get access to the full document:
Purchased by 34 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 7 reviews
4 year ago

4 year ago

4 year ago

5 year ago

5 year ago

7 year ago

8 year ago

4.3

7 reviews

5
2
4
5
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
KenzaS Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
202
Member since
9 year
Number of followers
128
Documents
10
Last sold
10 months ago

4.0

46 reviews

5
17
4
18
3
9
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions