100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

2.2C International Bachelor of Psychology Statistics II summary

Rating
-
Sold
1
Pages
88
Uploaded on
16-10-2023
Written in
2022/2023

In depth summary of bookchapters, study material and lectures of second year Statistics course. I got a 9.6 for the exam.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
October 16, 2023
Number of pages
88
Written in
2022/2023
Type
Summary

Subjects

Content preview

MMC Chapter 8: Proportions



➔ Binomial distribution review from 1.3
◆ Conditions:
● Fixed number of observations n
● n observations are all independent
● Each observation falls into one of the two categories “success” or
“failure”
● Probability of success (p) is the same for all observations
◆ Examples: coin toss, yes/no survey
◆ B(n,p)
◆ Binomial distributions are important when we want to make inferences about
the proportion p of successes in a population
◆ Generally, we use binomial sampling distribution for counts when the population
is at least 20 times as large as the sample
◆ If a count X has the binomial distribution B(n,p), then:




◆ the count X has a binomial distribution, not the p^ !!
_____________

8.1 Inference for a single proportion

➔ we record counts or proportions when we collect data about a categorical variable from
a population
➔ we draw a simple random sample (SRS) from the population
➔ the sample proportion p^= X/n estimates the unknown population proportion p
➔ if the population is at least 20 times as large as the sample, then the count X has a
binomial distribution B(n,p)
➔ When the sample size n sufficiently large, the sampling distribution of p^ is


approximately normal with mean and standard deviation

,➔ however, we don’t know the population proportion p, so we have to replace it with p^---
now it’s called standard error




➔ We use the large-sample confidence interval for 90%, 95%, and 99% confidence
whenever the number of successes and the number of failures are both at least 10.
➔ For smaller sample sizes, we recommend exact methods that use the binomial
distribution.
➔ There is also an intermediate case between large samples and very small samples where
a slight modification of the large-sample approach works quite well. This method is
called the “plus four” procedure:
➔ We add 4 observations to the sample, with 2 successes and 2 failures




➔ Significance test for a single proportion:
◆ distribution of sample proportion p^ is appx. normal— to construct confidence
intervals, we substitute p^ in place of pto obtain the standard error (and use it
for margin or error)
◆ however in significance testing, we assume that the value given by null
hypothesis for p is true H0: p=p0

, ◆
◆ In problems like which product is better etc., two-died tests should be used
because we cannot make a scientific claim on the superiority of one product over
another (for advertising purposes etc.)
◆ we often don’t conduct sig tests for a single proportion because there is often
not a single p0 we want to test— i.g. coin tossing, drawing cards, proportions
from previous studies etc. could provide p0

➔ choosing a sample size for confidence interval:



◆ we aim to pick a specific sample size for our desired margin of error
◆ chosen confidence level determines the z-value
◆ we don’t know p^ yet bc we didn’t collect data yet:
● we can use p^ from a previous similar study
● we can take p^=0.5, because the margin of error is largest in this case and
it will generate n larger than we actually need (safe choice)
◆ then, we can calculate n

, 8.2 Comparing two proportions

➔ now we compare two proportions from 2 populations




➔ the difference between 2 sample proportions: D=p^1-p^2
➔ when both sample sizes are large, sampling distribution of the difference D is appx
normal

➔ mean of D: (addition rule for means)
➔ standard deviation of D:




➔ Confidence interval for a difference in proportions:

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
gg12121 Erasmus Universiteit Rotterdam
Follow You need to be logged in order to follow users or courses
Sold
29
Member since
3 year
Number of followers
14
Documents
17
Last sold
1 month ago

4.0

5 reviews

5
3
4
0
3
1
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions