100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Lecture Notes/College aantekeningen Research Methods in Communication Science (S_RPPS)

Rating
4.0
(1)
Sold
15
Pages
52
Uploaded on
13-10-2023
Written in
2023/2024

Lecture Notes/College aantekeningen Research Methods in Communication Science (S_RPPS)

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
October 13, 2023
Number of pages
52
Written in
2023/2024
Type
Class notes
Professor(s)
Dimitris pavlopoulos
Contains
All classes

Subjects

Content preview

Research Methods in Communication With this estimation we can also define the
Science residuals:
Lecture 1: Introduction and linear
regression
Example wages and education
The residuals show how bad our estimation
is!
• Y hat = what model says
• Y = what reality is
• B0/B1 hat = things that come out of
your model
• B0 is the point where the line
crosses the Y axis
Scatterplot, for seeing the relationship • B1 is the slope
between 2 continuous variables
Regression results




- Intercept is B0
- Dependent variable = wage
- B0 = 4.97 expected wage if educ =
0
Simple regression - B1 = 0.79 increase in wage if
education increases by 1 year
Our model (= approximation of reality) is:
Wage = 4.97 + .079 * educ
Significance – is the coefficient
We don’t observe B0, B1 nor Ei
statistically different from 0?
Instead we estimate them along with the
dependent variable: - B0: t = 9.305, p < 0.000 → it is!
- B1: t = 20.284, p < 0.000 → it is!

,Generally, the interpretations of b are On residuals
- B0 expected Y (Y hat) if X = 0 To answer that question we need to
- B1 change in Y hat if X increases understand better what residuals are
in 1 unit
We assume that they:
Standardized regression
- Have mean zero
We might actually want a standardizes - Are not related with X
regression. Why?
We’ll see that the behavior of their
- Sometimes X = 0 doesn’t make a variance is very important too!
lot of sense. E.g. age = 0
What are they conceptually?
- B1 depends on the units of X which
makes it difficult to interpret - The part of Y not explained by X;
how far is our prediction of Y from
How does the standardized regression
the real Y
works?
Example
- We replace Y and X with their
standardized (Z) versions
- Remember that:


- Zx and Zy have mean 0 and
standard deviation (sd) 1
We can write this regression as


What happens now?
- Since both variables have mean 0
→ B0 = 0
- Our new coefficient interpretation
is that if X increases by 1 unit sd, Regression line
then Y increases by B1 sd’s The sum of the residuals is expected to be
Regression line 0

There are many possible lines → which We define the regression line by making
one should we draw? Worded differently, ALL the residuals as low as possible!
which Bhat0 and Bhat1 ‘fit’ best our data? Should we reduce
We need to construct the line that best - Not really, remember that there are
approximates reality positive and negative residuals
- They might cancel out

,To avoid this issue we will square the sum: The TSS can be easily seen when we
predict Y only with its average
- It’s the sum of the square distance
- This is termed the Residual Sum of
in the plot!
Squares (RSS)
- Least Squares Method = Besides the totals, sometimes is useful to
minimizing the RSS seen the mean errors
Splitting the Sum of Squares - To do this we divide by the degrees
of freedom
The total variance of Y is…
Degrees of freedom = number of
independent pieces of information used to
- Practically: the ‘error’ you make calculate a statistic
when predicting Y with Yflathat
- Formally: how much variance of Y
is there to explain K = the number of independent variables
The variance of Y which CAN be N = sample
explained by X is…

= the mean squared total error
- Practically: what the regression
The square root of the
explains
is also referred as RMSE
The variance of Y which CANNOT be
explained by X is… - It’s one of the most common
measures of regression quality!
Coefficient of determination R-squared
- Practically: what the regression
does NOT explain R2 is the percentage (between 0 and 1) of
the total variance that is explained by the
regression…
How can we see these results?



So, the percentage of unexplained
RSS = 756.5755 SSE = 8451.138 TSS = variance is…
9207.713
We can also see the SSE in the ANOVA
table

, Residuals and regression quality Lecture 2: Multiple Regression
Keep in mind that we assumed linearity In multiple regression our interest is to
explain Y as a function of several
- The conditional means of Y are
independent variables
best shown in a line
- In other words: we assume that The new model can be written as


Back to the example: let’s explain wage by
What if I don’t have linearity (see plot with education and age
conditional means in red below)?
Causality
- MSE is not an appropriate measure
We are interested in the question: is there a
for assessing the regression quality
causal effect of X on Y?
Requirements for causality
- X and Y are associated
- X (independent) is realized earlier
than Y (dependent)
- We have excluded all other
alternative explanations of Y
Multiple regression aim
Keep in mind that…

As we will see assumption are very - Correlation does not imply
important in regression! causation
- The third requirement for causation
is the most difficult to fulfil
We use multiple regression because we
want to comply with the third requirement
We exclude alternative explanations by
controlling for several variable.
- However, it’s not that simple
We should think about controls in multiple
regression falling within three cases or
scenarios

Reviews from verified buyers

Showing all reviews
1 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Evu8 Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
56
Member since
3 year
Number of followers
34
Documents
19
Last sold
1 week ago

4.3

7 reviews

5
3
4
3
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions