100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Résumé CHAPITRE II -Thermodynamique (BAC +1 -SMPC)

Rating
-
Sold
-
Pages
18
Uploaded on
17-09-2023
Written in
2014/2015

CHAPITRE II -Thermodynamique (BAC +1 -SMPC)

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
September 17, 2023
Number of pages
18
Written in
2014/2015
Type
Summary

Subjects

Content preview

1

CHAPITRE II

EQUATION D’ETAT –TRANSFORMATIONS



I- RAPPELS DES NOTIONS DE MECANIQUE ET DE CHALEUR.
1- Travail et énergie mécanique.
a) Par définition : Energie signifie capacité de travail . Le travail est
défini en mécanique comme une grandeur scalaire, c’est le produit scalaire de la
force par le déplacement effectué par son point d’application.
  B  
W  Fdl  WA   Fdl
B

A
.W>0 si le déplacement est dans la même sens que la force (travail moteur)
.W<0 si le déplacement se fait en sens contraire de la force (travail résistant)
.Un système mécanique susceptible de fournir du travail contient de la capacité du
travail ou du travail en réserve, il contient de l’énergie.

Si cette énergie est due à la position des éléments d’un corps dans l’espace, on
parle alors d’énergie potentielle.

Exemples :
i) Un lac de barrage rempli d’eau : si (h) est la hauteur de chute et Mg le poids
de la quantité d’eau tombante, l’énergie potentielle est :




EP = W = Mg.h




j) La détente d’un gaz (air comprimé) nous fournit également de l’énergie sous
forme de travail.




1

, 2




Où est le vecteur normal à la surface S sur laquelle s'applique la force F. est dirigé vers
les x négatifs.




dW = - Fr dx

b) Conservation de l’énergie mécanique : C’est une grande loi qui gouverne la
mécanique.
Enoncé : Dans les phénomènes purement mécaniques, l’énergie mécanique se
conserve.

Considérons le cas d’un point matériel soumis à une force F et se déplaçant de

dl
W  F . dl

En utilisant le Principe Fondamental de la Dynamique(PFD), ce travail s’écrit :
dV  1
W  m . d l  m dV . V  d( mV 2 )
dt 2
d’où :
vf 1 1
Wv  . m Vf2 - mVi2
i 2 2

Cette équation montre qu’il y a transformation du travail en énergie cinétique !
Ceci est-il toujours vrai ? Autrement dit, existe-t-il des phénomènes purement
mécaniques ?

En réalité il n’y en a pas !!

on peut citer l’exemple de la chute des corps dans le vide.

Par contre la chute des corps dans l’air n’est pas un phénomène purement
mécanique. Il donne lieu à la production de « chaleur » par frottement (résistance
de l’air)


2

, 3

Conclusion :
Toute production de chaleur correspond à une diminution d’énergie mécanique.
Réciproquement toute création de travail entraîne la disparition (la consommation)
d’une certaine quantité de « chaleur »

2- Notions de chaleur
L’étude des phénomènes calorifiques a conduit à distinguer deux notions : la
température (T) et la chaleur ou plus précisément, quantité de chaleur (Q).
Grâce au toucher, un corps nous paraît froid, tiède, ou chaud.
Prenons l’exemple de l’eau. On sait qu’elle existe sous trois états de la matière :
solide, liquide et gazeux. Ainsi chacun de ces états sera caractérisé par une
température telle que :

solide liquide gazeux
(glace) (eau) (vapeur)
T1 < T2 < T3
Conclusion :
Le changement dans l’état physique des corps est accompagné d’une variation de
la température. Ainsi « la chaleur » est une forme d’énergie qui conduit soit à une
variation de température soit à un changement de phase.

II- ETAT D’EQUILIBRE D’UN SYSTEME

a)Définition d’un système : C’est un corps ou un ensemble de corps de masse
déterminée, délimité dans l’espace. On appelle milieu extérieur tout ce qui n’est
pas le système. La frontière entre le système et le milieu extérieur peut être
matérielle ou imaginaire.

b)Etat d’équilibre : D’une manière générale on distingue trois sortes d’équilibres :
(les trois cas sont susceptibles de produire de la chaleur et donc changer la
température)
i) Equilibre mécanique (voir cours de mécanique).

ii) Equilibre chimique : Pas de réaction chimique à l’intérieur du système et pas de
transfert de matière d’une partie du système vers une autre.

iii) Equilibre thermique : Pas de gradient de température à l’intérieur du système
et la température du système est la même que celle du milieu extérieur.
Quand ces trois types d’équilibre sont réalisés, le système est dit en équilibre
thermodynamique.

c) Paramètres définissant l’état d’équilibre d’un système :Variable macroscopiques.



3
$10.39
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
zouhairsabri

Also available in package deal

Get to know the seller

Seller avatar
zouhairsabri fssm
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
22
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions