100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Lecture notes - Cell And Molecular Biology (DNA - Genes) - Using Becker's World of the Cell, Global Edition

Rating
-
Sold
-
Pages
7
Uploaded on
06-09-2023
Written in
2019/2020

If you're studying a life science (e.g. - biomed, bioscience, physiology, sports science, sports physiology etc), then this detailed set of lecture notes on DNA and Genes will help you smash your first set of exams on cell/molecular biology! Try using this set of notes along with my other notes on DNA (including notes on structure, function, replication, and translation of DNA) These notes cover genes and gene regulation. You'll build on this knowledge especially in third year if you're doing biomedial/bioscience pathways, so this set of notes will be invaluable to you not just in first year, but also in your second and final year as well!

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Unknown
Course

Document information

Uploaded on
September 6, 2023
Number of pages
7
Written in
2019/2020
Type
Class notes
Professor(s)
-
Contains
All classes

Subjects

Content preview

Gene Regulation 21/10/19
- Gene regulation allows us to adapt to environmental change

All organisms must regulate which genes are expressed at a given time

Genes = turned off/on when responding to signals – from internal/ext. env.

Gene regulation = essential for cell specialization for multicellular organisms

Regulation differs in Bacterial cells and Eukaryotes

Bacterial regulation:
Bacterial cell that conserves energy/resources = advantage over one that can’t

- E.g. = E. coli – lives in Colon
- Needs AA tryptophan to survive
- If host person ≠ intake said AA – E. coli actives metabolic pathway – makes AA trypt. from
another compound
- If host person intakes trypt. – E. coli ≠ produce trypt. – stops using resources for metabolism

Metabolic pathway = controlled on 2 levels:

- Cells adjust activity of enzymes (catabolic enzyme activity = dependent on ‘chemical cues’)
- Activity of 1st enzyme in pathway = inhibited by pathway’s end product (trypt.)
- Accumulation of trypt. = inhibition of enzyme = no more trypt. production
- Process = feedback inhibition – lets cell adapt to short-term fluctuations of substance

- Cells adjust production of enzymes – regulate expression of genes coding for enzyme
- If trypt. ≠ needed – cell prevents production of enzymes catalysing synthesis of trypt.
- Process occurs at transcription level

Allosteric = Protein with structure altered reversibly by small molecule – modifying function



Many bacterial genes = switched on/off by metabolic changes in a cell

Operon model = basic mech. of gene expression control

, Operons:

Operon = cluster of functionally related genes – co-ordinately controlled by single ‘on/off switch’

- One promoter = sufficient for all 5 operon genes coding for enzymes for metabolic pathway
- One long mRNA strand = produced – all code for pp for enzymes
- Translation = separate due to presence of start/stop codons

Enzymes = simultaneously synthesised due to on/off switch

- On/off switch = segment of DNA (Operator)
- Controls access of RNA Polymerase to said genes

Operator, Promotor and genes being controlled = Operon

Operon = switched off by Repressor

- Binds to operator – blocks attachment of RNA pol. to promotor region
- Transcription of genes ≠ occur
- Rep. protein = specific for operator of certain operon
- Active or inactive form – determined by presence of other molecules

Rep. Protein = encoded by regulatory gene

- Expressed continuously (at low rate)
- Binding of repressors = reversible
- Operator = in 2 states – repressor bound and repressor unbound
- Repressor = allosteric – 2 shapes - active and inactive
- Inactive version = synthesized – low affinity for operator

Tryptophan = corepressor

- Small mol – binds to allosteric site of repressor – activates it
- More trypt. = more assoc. with repressor – less transcription of operon genes = less enzyme
- Less trypt. = less assoc. with repressor – more transcription of operon genes = more enzyme

Enzymes = repressible enzymes

Inducible Operons:

Inducible operons = usually off – stimulated/induced to be on when small molecule interacts with
different regulatory protein

- E.g. = lac operon (lactose)

Lac operon = genes coding for enzymes for hydrolysis & metabolism of lactose


- Lactose = available for E. coli – if host has milk
- Metabolism = hydrolysis of lactose to glucose and galactose
$9.02
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jaz2

Also available in package deal

Get to know the seller

Seller avatar
jaz2 Manchester Metropolitan University
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
17
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions