100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Class notes

Seminars Wetenschappelijke kennis (D. Postmus) Cyclus 2.1.1.

Rating
-
Sold
-
Pages
18
Uploaded on
05-09-2023
Written in
2022/2023

Dit zijn de aantekeningen van de colleges van meneer Postmus op de RuG tijdens cyclus 2.1.1. (nieuwe curriculum). Hij geeft het vak 'Wetenschappelijke kennis'. Ik kan het document ook versturen per mail of via . Stuur mij dan een privé-berichtje.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 5, 2023
Number of pages
18
Written in
2022/2023
Type
Class notes
Professor(s)
D. postmus
Contains
All classes

Subjects

Content preview

Wetenschappelijke kennis (2265) –
Seminar: Lineaire regressie
Enkelvoudige lineaire regressie
Doel: het voorspellen van de waarde van een uitkomstvariabele (Y) o.b.v. de waarde van een verklarende variabele X.

Enkelvoudig: één verklarende variabele
- Bij meervoudig is het bijvoorbeeld lengte verklaren aan de hand v bv. leeftijd/geslacht.

Lineair: de verwachte waarde van Y wordt uitgedrukt als een lineaire functie van X.

Y = continu. X = continu dan wel dichotoom of categorisch.



Statistisch model:
Yi = behaalde tentamencijfer door de i-de student in de steekproef.
𝜇! = verwachte tentamencijfer voor de i-de student in de steekproef.
𝜀! = afwijking tussen het behaalde en het verwachte tentamencijfer.

Aanname: de afwijkingen zijn normaal verdeeld met gemiddelde 0 en gelijke variantie 𝜎 " (homoscedasticiteit).



Grafiek
Stap 1 is altijd: situatie grafisch weergeven!

Strooidiagram: verband tussen aantal uren studeren (X) en tentamencijfer (Y)




Regressievergelijking
Algemeen: de regressievergelijking beschrijft de verwachte (of voorspelde) waarde van de uitkomstvariabele o.b.v. de waarden
van één of meer verklarende variabelen

Regressievergelijking


waarbij Xi staat voor het aantal uren dat de i-de student gestudeerd heeft (en 𝜇i voor het verwachte tentamencijfer).

Grafisch

,Residuen kwadratensom (SSR)
Residuen kwadratensom (SSR): som van de gekwadrateerde afwijkingen van de
door de regressievergelijking voorspelde tentamencijfers tot de geobserveerde
tentamencijfers.

Best passende regressielijn = de lijn waarvoor SSR het kleinst is.

Rode stukje in de afbeelding kwadrateer je.




Model kwadratensom (SSM)
Model kwadratensom (SSM): de som van de gekwadrateerde afwijkingen van de door
de regressievergelijking voorspelde tentamencijfers tot het gemiddelde
tentamencijfer.

• Gekwadrateerde afwijking van het gemiddelde
• Verschil tussen gemiddelde cijfer (horizontale lijn) en verwachte cijfer
(schuine lijn) à kwadrateren.
• Je pakt groene stuk en dat kwadrateer je.



SSR vs. SSM:

• Als er geen lineair verband is, dan zou de helling 0 moeten zijn à de lijn die nu diagonaal is zou dan samenvallen met
gemiddelde cijfer (horizontale lijn). De groene lijn reduceert dan helemaal naar 0, want die ligt op de lijn à SSM is 0.
• Als regressievergelijking perfect is à dan is de SSR = 0, SSM verklaart alles dan perfect.



Totale kwadratensom (SST)
Totale kwadratensom (SST): de som van de gekwadrateerde afwijkingen van de geobserveerde tentamencijfers tot het
gemiddelde cijfer.

Kan gesplitst worden in een gedeelte dat kan worden verklaard door de regressievergelijking (SSM) en een gedeelte dat
onverklaard blijft (SSR).
- Rood + groen à kwadrateren.

SST = SSM + SSR.

, Proportie verklaarde variantie
Proportie verklaarde variantie: R2 = SSM / SST = 130,,306 = 0,58

Interpretatie: hoeveelheid van de variatie in de behaalde tentamencijfers dat kan
worden toegeschreven door verschillen in het aantal uren studeren.




Regressievergelijking
B0 = constant (in SPSS)

Je kunt o.b.v. de tabel berekenen wat
het verwachte tentamencijfer is.
- Bv. verwachte cijfer na 24 uur
studeren: 3,05 + 0,14*24 = 6,4.

Je ziet ook p-waarden à er worden
verschillende hypothesen getoetst.

Vooral de hypothese op de tweede rij is interessant. Daar geldt: H0: 𝛽# = 0, ofwel als het aantal uren studeren geen invloed
heeft, zou de helling gelijk moeten zijn aan 0.



F-toets




Aannames
1. De waarnemingen zijn onafhankelijk
a. Deze is al snel waar. Als we te maken hebben met een cijfer van verschillende studenten wordt het al snel
onafhankelijk.
2. De residuen zijn normaal verdeeld
a. Histogram en P-P Plot
3. De spreiding (variantie) van de residuen is gelijk voor alle waarden van X (homoscedasticiteit)
a. Scatterplot
$11.68
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Mariecusters Rijksuniversiteit Groningen
Follow You need to be logged in order to follow users or courses
Sold
261
Member since
7 year
Number of followers
154
Documents
101
Last sold
3 weeks ago

4.1

21 reviews

5
9
4
8
3
3
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions