100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Numerical Methods for Engineers 8th edition by Steven C. Chapra, Raymond P. Canale.

Rating
4.5
(4)
Sold
20
Pages
1180
Grade
A+
Uploaded on
17-07-2023
Written in
2022/2023

Solution Manual for Numerical Methods for Engineers 8th edition by Steven C. Chapra, Raymond P. Canale.

Institution
SM+TB
Course
SM+TB











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
SM+TB
Course
SM+TB

Document information

Uploaded on
July 17, 2023
Number of pages
1180
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

1 Copyright 202 1 © McGraw -Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw -Hill Education. Solution Manual for All Chapters Numerical Methods for Engineers 8th edition by Steven C. Chapra, Raymond P. Canale CHAPTER 1 1.1 Use calculus to solve Eq. (1.9) for the case where the initial velocity υ(0) is nonzero. We will illustrate two different methods for solving this problem: (1) separation of variables, and (2) Laplace transform. dv cgvdt m Separation of variables : Separation of variables gives 1dv dtcgvm
 The integrals can be evaluated as ln /cgvmtCcm   where C = a constant of integration, which can be evaluated by applying the initial condition to yield ln (0) /cgvmCcm which can be substituted back into the solution ln ln (0) //ccg v g vmmtc m c m            This result can be rearranged algebraically to solve for v,  ( / ) ( / )(0) 1c m t c m t mgv v e ec   where the first part is the general solution and the second part is the particular solution for the constant forcing function due to gravity. For the case where , v(0) = 0, the solution reduces to Eq. (1.10)  ( / )1c m t mgvec 2 Copyright 202 1 © McGraw -Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw -Hill Education. Laplace transform solution: An alternative solution is provided by applying Laplace transform to the differential equation to give ( ) (0) ( )gcsV s v V ssm   Solve algebraically for the transformed velocity (0)()/ ( / )vgVss c m s s c m (1) The second term on the right of the equal sign can be expanded with partial fractions ( / )
( / ) / ( / )g A B A s c m Bs
s s c m s s c m s s c m     (2) By equating like terms in the numerator, the following must hold 0cg A As Bsm   The first equation can be solved for A = mg/c. According to the second equation, B = –A, so B = –mg/c. Substituting these back into (2) gives //
( / ) /g mg c mg c
s s c m s s c m This can be substituted into Eq. 1 to give (0) / /()//v mg c mg cVss c m s s c m   Taking inverse Laplace transforms yields ( / ) ( / )( ) (0)c m t c m t mg mgv t v e ecc   or collecting terms  ( / ) ( / )( ) (0) 1c m t c m t mgv t v e ec   1.2 Repeat Example 1.2. Compute the velocity to t = 10 s, with a step size of (a) 1 and (b) 0.5 s. Can you mak e any statement regarding the errors of the calculation based on the results? At t = 10 s, the analytical solution is 44.91893 (Example 1.1). The relative error can be calculated with analytical numericalrelative true error 100%analytical The numerical results are: 3 Copyright 202 1 © McGraw -Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw -Hill Education. step v(10) magnitude of relative error 2 48.0179 6.899 % 1 46.411 2 3.322 % 0.5 45.6509 1.630 % The error versus step size can then be plotted as Thus, halving the step size approximately halves the error. 1.3 Rather than the linear relationship of Eq. (1.7), you might choose to model the upward force on the parachutist as a second -order relationship, UF c v v= - ¢∣∣ where c′ = a bulk second -order drag coefficient (kg/m). Note that the second -order term could be represented as v2 if the parachutist always fell in the downward direction. For the present case, we use the more general representation, vv∣∣ , so that the proper sign is obtained for both the downward and the upward directions. (a) Using calculus, obtain the closed -form solution for the case where the jumper is initially at rest (υ = 0 at t = 0). (b) Repeat the numerical calculation in Example 1.2 with the same initial condition and parameter values, but with second -order drag. Use a value of 0.225 kg/m for cd′. (a) You are given the following differential equation with the initial condition, v(t = 0) = 0, 2 dv cgvdt m Multiply both sides by m/c′ gives 2 m dv mgvc dt c Define / a mg c   0.01.02.03.04.05.06.07.08.0
0 0.5 1 1.5 2 2.5Relative error (%) Step size (seconds) Relative True Error vs. Step size 4 Copyright 202 1 © McGraw -Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw -Hill Education. 22 m dvavc dt Integrate by separation of variables, 22dv cdtm av
 A table of integrals can be consulted to find that 1
221tanhdx x
aa ax
 Therefore, the integration yields 1 1tanhvctCa a m  If v = 0 at t = 0, then because tanh–1(0) = 0, the constant of integration C = 0 and we obtain the equation 1 1tanhvcta a m  This result can then be rearranged to solve for v tanhgm gcvtcm    (b) Using Euler‘s method, the first two steps are computed 2 0.225(2) 0 9.81 (0) 2 19.6268.1v    2 0.225(4) 19.62 9.81 (1 43 9.62)66.696 4 28.3115 v    The computation can be continued and the results summarized along with the analytical result as: t v-numerical dv/dt v-analytical 0 0 9.81 0 2 19.62 8.538157 18.8138836 4 36.69631454 5.360817 33.61984724 6 47.41794779 2.381162 43.22542283 8 52.18027088 0.814029 48.7004867 10 53.80832813 0.243911 51.59332241 12 54.29615076 0.069674 53.06072073  54.48999908 0 54.48999908
$17.49
Get access to the full document:
Purchased by 20 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 4 reviews
6 months ago

9 months ago

1 year ago

2 year ago

4.5

4 reviews

5
2
4
2
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
StuviaGuides West Virgina University
View profile
Follow You need to be logged in order to follow users or courses
Sold
15160
Member since
6 year
Number of followers
8354
Documents
5312
Last sold
3 hours ago
Accounting, Finance, Statistics, Computer Science, Nursing, Chemistry, Biology & More — A+ Test Banks, Study Guides & Solutions

As a Top 1st Seller on Stuvia and a nursing professional, my mission is to be your light in the dark during nursing school and beyond. I know how stressful exams and assignments can be, which is why I’ve created clear, reliable, and well-structured resources to help you succeed. I offer test banks, study guides, and solution manuals for all subjects — including specialized test banks and solution manuals for business books. My materials have already supported countless students in achieving higher grades, and I want them to be the guide that makes your academic journey easier too. I’m passionate, approachable, and always focused on quality — because I believe every student deserves the chance to excel.

Read more Read less
4.3

2132 reviews

5
1469
4
281
3
168
2
69
1
145

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions