100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Inorganic Chemistry 5th Edition By Gary Miessler, Paul Fischer, Donald Tarr (Solution Manual)

Rating
-
Sold
9
Pages
231
Grade
A+
Uploaded on
07-07-2023
Written in
2022/2023

Inorganic Chemistry 5e Gary Miessler, Paul Fischer, Donald Tarr (Solution Manual) Inorganic Chemistry 5e Gary Miessler, Paul Fischer, Donald Tarr (Solution Manual)

Institution
Inorganic Chemistry 5e Gary Miessler, Paul Fischer
Course
Inorganic Chemistry 5e Gary Miessler, Paul Fischer











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Inorganic Chemistry 5e Gary Miessler, Paul Fischer
Course
Inorganic Chemistry 5e Gary Miessler, Paul Fischer

Document information

Uploaded on
July 7, 2023
Number of pages
231
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

(Inorganic Chemistry 5e Gary Miessler, Paul Fischer, Donald Tarr)

(Solution Manual, There is no Solution for Chapter 1)


CHAPTER 2: ATOMIC STRUCTURE
h 6.626  10 34 J s
2.1 a. = =  2.426  10 11 m
mv (9.110  10 –31kg)  (0.1)  (2.998  108 m s –1 )

h 6.626  1034 J s
b.  = =  6  10 34 m
mv 0.400 kg  (10 km/hr  10 m/km  1hr/3600s)
3



h 6.626  10 34 J s
c.  = = -1  9.1 10
35
m
mv 8.0 lb  0.4536 kg/lb  2.0 m s

h 6.626  10 34 J s
d. = =
mv 13.7 g  kg/10 3 g  30.0 mi hr -1  1 hr/3600s  1609.3 m/mi

 3.61 10 33 m
 1 1  hc 1
2.2 E  RH  2 – 2 ; RH  1.097 10 7 m–1  1.097 10 5 cm–1 ;   
2 nh  E __

1 1   12 
nh  4 E  RH  –   RH    20,570cm –1  4.085  10 –19 J
 4 16   64 
  4.862 10 –5 cm = 486.2 nm

 1 1   21 
nh  5 E  RH  –   RH    23,040cm –1  4.577  10 –19 J ;
 4 25   100 
  4.34110 –5 cm = 434.1 nm

 1 1   8
nh  6 E  RH  –   RH    24,380cm –1  4.841 10 –19 J ;
 4 36   36 
  4.102 10 –5 cm = 410.2 nm
 1 1   45 
2.3 E  RH 
4 –   RH    25,190cm–1  5.002 10 –19 J
 49 
 196 
1
  __  3.970 10 –5 cm = 397.0 nm


hc (6.626  1034 J s)(2.998  108 m/s)
2.4 383.65 nm E   5.178  1019 J
 (383.65 nm)(m/10 nm)9


hc(6.626  10 34 J s)(2.998  108 m/s)
379.90 nm E   5.229  10 19 J
 (379.90 nm)(m/10 nm) 9




Copyright © 2014 Pearson Education, Inc.

,2 Chapter 2 Atomic Structure

1

 1 1  1 1 E 1 E  2
E  RH  2  2  ;   and nh    
2 nh  nh
2
4 RH 4 RH 
1

1 5.178 10 19 J  2
For 383.65 nm: nh    18 
9
4 2.1787 10 J 
1

1 5.229 10 19 J  2
For 379.90 nm: nh    18 
 10
4 2.1787 10 J 

2.5 The least energy would be for electrons falling from the n = 4 to the n = 3 level:

 1 1   7 
E  RH  2  2   2.1787 10 18 J    1.059 10 19 J
3 4  144 

The energy of the electromagnetic radiation emitted in this transition is too low for
humans to see, in the infrared region of the spectrum.

2.6
E  102823.8530211 cm 1  97492.221701 cm 1  5331.6313201 cm 1
E  hc  (6.626  1034 J s)(2.998  108 m s)(100cm m)(5331.6313201 cm 1 )
E  1.059  1019 J
This is the same difference found via the Balmer equation in Problem 2.5 for
a transition from n  4 to n  3. The Balmer equation does work well for hydrogen.

2.7 a. We begin by symbolically determining the ratio of these Rydberg constants:
2 2  He + (Z He+ )2 e4 2 2  H (Z H )2 e4
RHe +  RH 
(4 0 )2 h2 (4 0 )2 h2
RHe +  He+ (Z He+ )2 4  He+
  (since Z  2 for He  )
RH  H (Z H ) 2 H
The reduced masses are required (in terms of atomic mass units):
1 1 1 1 1
   
H me m proton 5.4857990946  10 m 1.007276466812 mu
4
u
1
 1823.88 mu1;  H  5.482813  104 mu
H
1 1 1 1 1
   
He  me mHe2 5.4857990946  10 m 4.001506179125 mu
4
u
1
 1823.13 mu1;  He +  5.485047  10 4 mu
He +




Copyright © 2014 Pearson Education, Inc.

, Chapter 2 Atomic Structure 3


The ratio of Rydberg constants can now be calculated:
RHe+ 4  He+ 4(5.485047  104 mu )
   4.0016
RH H 5.482813  104 mu

b. RHe +  4.0016RH  (4.0016)(2.1787  1018 J)  8.7184  1018 J

c. The energy difference is first converted to Joules:
E  hc  (6.626  1034 J s)(2.998  108 m s)(100cm m)(329179.76197 cm 1 )
E  6.5391 1018 J
The Rydberg equation is applied, affording nearly the identical Rydberg constant for He+:
1 1 1 1
E  RHe + ( 2  2 )  6.5391 1018 J  RHe + (  )
n n 1 4
l h

RHe +  8.7188  1018 J

h2 2
2.8 a. – E ;   A sin rx  B cos sx
8 2 m x 2

= Ar cos rx – Bs sin sx
x

2 
= –Ar 2 sin rx – Bs 2 cos sx
x 2


h2

8 m
 – Ar
2
2

sin rx – Bs2 cos sx  E  A sin rx + B cos sx 

If this is true, then the coefficients of the sine and cosine terms must be independently
equal:

h 2 Ar 2 h 2 Bs 2
 EA ; = EB
8 2 m 8 2 m

8 2 mE 2
r 2  s2  ; r  s  2mE
h 2
h
b.   A sin rx ; when x  0,   A sin 0  0
when x  a,   A sin ra  0
n
 ra  n ; r  
a

r 2 h 2 n 2 2 h 2 n 2h 2
c. E  
8 2 m a 2 8 2 m 8ma 2




Copyright © 2014 Pearson Education, Inc.

, 4 Chapter 2 Atomic Structure

a a a
x 
2 n a nx  nx 
d.   dx   
2 2
A sin   dx  A
2
sin 2   d  
 a  n  a   a 
0 0 0
a
a 2 1 nx  1 2nx 
 A    – sin   1
n 2  a  4  a  0

aA 2 1 na 1 1 
 – sin2n – 0  sin0 1
n 2 a 4 4 


2
A
a


2.9 a. 3pz 4dxz




b. 3pz 4dxz




c. 3pz 4dxz

For contour map, see Figure 2.8.




Copyright © 2014 Pearson Education, Inc.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
tutorsection Teachme2-tutor
View profile
Follow You need to be logged in order to follow users or courses
Sold
7480
Member since
3 year
Number of followers
3245
Documents
5857
Last sold
4 hours ago
TutorSection

Best Educational Resources for Student. We are The Only Original and Complete Study Resources Provider in the Market. Majority of the Competitors in the Market are Selling Fake/Old/Wrong Edition files with cheap price attraction for customers.

4.1

1123 reviews

5
660
4
200
3
101
2
55
1
107

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions