100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

Summary neuroscience, neurophysiology

Rating
4.5
(2)
Sold
1
Pages
82
Uploaded on
21-06-2023
Written in
2022/2023

I passed this course with the help of these summaries with a 9! It contains all lecture material including all slides. NOTE: I used the anatomy slides that were given and the summary Antonio made. These are not included in this summary. This was sufficient!

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 21, 2023
Number of pages
82
Written in
2022/2023
Type
Summary

Subjects

Content preview

Summary Neuroscience

Lecture 1&2: membrane potential

Resting membrane potential

Learning objectives:
-knowing the difference between active and passive conduction
-be able to explain what the equilibrium potential or reversal potential is
-understanding how the resting membrane potential is established
-knowing which ions are important for the resting membrane potential
-knowing for which ions the permeability changes during the action potential
-knowing how to calculate the resting membrane potential when the membrane is
permeable for 1 ion, or multiple ions

Electrical signals in the brain
All the output of the brain is generated by electrical signals.

Electrical signals in nerve cells



These cells translate a stimulus into a
receptor potential.


Nerve cells are connected with each other
through synapses. An axon potential arises
and must be translated into a chemical signal
to convene its message to its next neuron. It
does so by releasing neurotransmitters
which will be sensed by the post-synaptic
transmitter in the synapse and that will
generate this synaptic potential.

An action potential is a signal when a neuron
is being activated (for instance by receptors
or other neurons) leading to depolarization
and an action potential→ very strong short
pulse.


When we try to distinguish the different signals, we see
- A different source
- The amplitude of the action potential is much bigger
- The time of depolarization is shorter in the action potential

,What are the requirements for electrical signaling between nerve cells?
- must be fast
- travel long distances
- should not loose strength over distance (reliability> amplitude must stay the same)




The action potential is quite preserved in animals, making studying them easier.

Active and passive signals
We have a neuron and two electrodes (electrophysiology). With one we can stimulate the
neuron and the other record the signal in the neuron.
You stick the electrode inside the cell, measuring the potential inside versus outside
(reference electrode in a bath) and you measure the potential difference between these two
electrodes. Nerve cells are hyperpolarized, they have a negative resting membrane
potential. If you have the electrode in the bath, you measure the (before inserting) you do
not have a potential difference=0. When you insert the measuring electrode in the cell, you
measure the cell's resting potential (-65).
We give a negative injection (e-) of a current and then we see as a response a negative
reflection of this current potential. If you give a twice as big negative injection, then the
hyperpolarization will be twice as strong. This is called passive responses.
When we give a positive stimulus (below threshold) resulting in depolarization. When we
increase the amplitude of the positive stimulus twice (reaching threshold), we get an active
response, an action potential. What will happen if we give even stronger stimulation? →the
action potential will not change but the firing frequency is increased (can be explained by
the membrane potential).

,→ doesn’t work when you have a long axon




Extra: Excitation and inhibition




Active and passive signals are deviations from the resting membrane potential
What determines the resting membrane potential?

, Resting membrane potential is the electrical potential difference measured across the
membrane (inside with respect to outside→ reference electrode necessary)
• Based on two membrane properties:
-lipid bilayer is impermeable for ions
-specialized ion channels can conduct ions selectively (only one ion group can pass)
• Based on two principles in physics:
-diffusion of particles
-electrical forces between electrical charges




The chance of particles diffusing to lower
concentration is higher than vice versa.




Know the charges by heart
$12.78
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all 2 reviews
7 months ago

1 year ago

4.5

2 reviews

5
1
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
lvd26 Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
117
Member since
4 year
Number of followers
42
Documents
47
Last sold
1 week ago
Biomedical Sciences & Neurosciences

NOTE: my summaries are very extensive, they contain all the material. Therefore, you should start studying them early as they often contain over 100 pages! One schoolbook is often way more expensive than 1 year of summaries from me!

4.7

48 reviews

5
39
4
4
3
4
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions