100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Navorsingsmethodes en statistiek in de revalidatie HOC

Rating
-
Sold
-
Pages
29
Uploaded on
20-06-2023
Written in
2021/2022

Samenvatting van de hoorcolleges van Navorsingsmethodes en statistiek in de revalidatie .

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 20, 2023
Number of pages
29
Written in
2021/2022
Type
Summary

Subjects

Content preview

Statistiek
H1: Beschrijvende statistiek
Variabele = kenmerk van proefpersoon uitgedrukt in een getal.

- Kwalitatief: nominaal (geslacht) of ordinaal (rang) (Eigenschappen of categorieën)
- Kwantitatief: Interval (kalender) of ratio (tijd, gewicht) (getalwaarden, berekeningen)
(geen absoluut nulpunt)(wel absoluut nulpunt)
BMI kan zowel kwal als kwant zijn → onder of bovengewicht (kwal) als het getallen zijn,
kwan

1.1 Verdelingen weergeven met grafieken
A. Grafieken voor kwalitatieve variabelen
= categorische variabelen

- Staafdiagram
- Taartdiagram

B. Grafieken voor kwantitatieve variabelen
Verzameling getallen, in elke verzameling gegevens zekere variatie.
Variatiepatroon van kwantitatieve variabele = verdeling van variabele

Frequentietabel of grafische voorstelling:

- Stamdiagrammen – ‘stam-en-blad’ – ‘stem-and-leaf’
Doel: vorm van de verdeling in beeld brengen
Stam (=alle cijfers behalve de laatste) en blad (= laatste cijfer) definiëren.
Verticale lijst van klein naar groot, verticale streep aan rechterkant, bladen bij bijhorende
stam plaatsen. Bv: 21, 13,8, 19, 14, 26, 12, 24, 9, 14 🡪
Rug-aan-rug stamdiagram: 2 verwante verdelingen vergelijken.
Stammen splitsen: 1ste stam 0blad 0-4, 2de stam 0 blad 5-9.
Stammen afkappen: indien teveel cijfers, laatste weglaten.
Niet geschikt voor grote groepen/ veel observaties.
Onderzoeken 🡪 diagrammen op zijn kant zetten.
- Histogrammen
Aantal (freq) of percentage (rel freq) waarnemingen in elk interval.
Verdelen data in klassen van gelijke breedte.
Aantal per klasse = (relatieve) frequenties.
Geen horizontale ruimte tussen klassen.

Onderzoeken van verdelingen
In grafieken kijken naar globaal patroon en opvallende afwijkingen.
Eigenschappen:

- Centrum van de verdeling = mediaan (of gemiddelde)
- Spreiding = oa range tussen min en max
- 1 top = unimodaal, meerdere toppen = multimodaal
Modus = score die het meest voorkomt


1

, - Vorm van de verdeling = symmetrisch of scheef.
- Afwijkingen van de algemene vorm = uitbijters (niet weglaten)
Fouten weglaten of corrigeren

Tijdreeksgrafieken

- Lijndiagrammen
Gegevens uitzetten tegen tijd of volgorde. Tijd altijd x-as.
Observeren: aanhoudende stijging of daling, seizoensvariatie, fluctuaties, cycli.

1.2 Verdeling numeriek beschrijven
Eerst kijken naar de vorm van de verdeling op grafische manier. Dan numeriek beschrijven (centrum,
spreiding zijn te berekenen voor gelijk welke kwantitatieve variabele).
Variabele per variabele alvorens onderlinge verbanden/ effecten/ verschillen na te gaan.

A. Meten van het centrum: gemiddelde en mediaan
Rekenkundig gemiddelde of gemiddelde
= Tel alle waarnemingen op en deel door het aantal waarnemingen (n).
🡪 Gevoelig voor extreme waarnemingen (uitbijters, scheve verdeling met 1 staart).
Gemiddelde is geen resistente maat.

Mediaan
= middelste waarneming in geordende lijst
Wel resistente centrummaat.

Bij symmetrische verdeling: gemiddelde = mediaan
Hoe schever, hoe verder uit elkaar
Bij uitbijters: corrigeren of weglaten van gemiddelde

B. Meten van spreiding: kwartielen
Bij het beschrijven van een verdeling:
Centrummaat + spreidingsmaat (uitdrukking van variabiliteit van een verdeling).
Spreiding of range = verschil tussen max en min score.

Percentiel
30ste percentiel = P30 = de waarde zodat 30% van de verdeling hieronder valt of gelijk is.
50ste percentiel = P50 = mediaan.

Kwartielen
1ste kwartiel = 25ste percentiel (P25 - Q1) 🡪 mediaan van de waarnemingen onder Q2
2de kwartiel = 50ste percentiel of mediaan (P50 - Q2 – globale med)
3de kwartiel = 75ste percentiel (p75 – Q3)
Interkwartielafstand (IKA) = afstand Q3 – Q1 = 50% van de data
1,5 x IKA = boven Q3 of onder Q1 🡪 verdachte uitbijters
Vijfgetallen – samenvatting: info over centrum en spreiding (min, Q1, med, Q3, max)

Doosdiagram of boxplot
Randen = kwartielen, mediaan = lijnstuk in de doos, snorharen = min en mx (geen uitbijters)
Uitbijters en extreme waarden worden apart weergegeven.




2

, C. Meten van spreiding: standaardafwijking (s)
= Spreiding rond het gemiddelde.
Gebruiken als spreidingsmaat als gemiddelde = centrummaat.
Gebaseerd op afwijking van elke waarneming van het gemiddelde.
xi – gem

Variantie (s2) = gemiddelde van de gekwadrateerde afwijkingen.
Waarnemingen ver van gemiddelde: grote gekwadrateerde afwijking.
Waarnemingen dicht bij gemiddelde: kleine gekwadrateerde afwijkingen.

s = ∑ ¿¿ i – x )2 : (n-1) s = √ ❑2
2
(meet de spreiding rond het gemiddelde)

s=0 ( als er geen spreiding is, anders s > 0)
s is geen resistente maat.
s is belangrijk bij symmetrische verdelingen.
Meer dan 3 s = uitbijter 🡪 x ± 3s

E. Meeteenheid veranderen
Lineaire transformatie xnieuw = a + bx
Geen effect op vorm van verdeling, symmetrisch blijft symmetrisch.
Centrum en spreiding kunnen wel veranderen.
x, mediaan, Q’s 🡪 vermenigvuldigen met b en optellen met a.
IKA en s vermenigvuldigen met b.

1.3 De normale verdeling
A. Dichtheidskromme
Gladde kromme overheen histogram.
Compacte beschrijving, details verdwijnen, hoekigheid verdwijnt.
Totaal van de percentage over alle waarnemingen = 100% of relatieve frequentie 1.
🡪 oppervlakte onder kromme = 1.

B. Het meten van centrum en spreiding voor dichtheidskromme
Maten van centrum en spreiding zijn toepasbaar op dichtheidskrommen.
Mediaan = punt van gelijke oppervlakte, Q’s = 4 gelijke oppervlakten, IKA = afstand tussen Q1 – Q3.
p-de percentiel = p% oppervlakte links, 100 – p% oppervlakte rechts.
Gemiddelde/ verwachting = punt waar kromme in evenwicht zou zijn.
Bij symmetrische krommen: mediaan = gemiddelde.
Bij scheve krommen: gemiddelde dichter bij staart.

C. Normale verdeling
Symmetrische eentoppige, klokvormige dichtheidskrommen.
gemiddelde populatie
Gemiddelde/ verwachting μ in centrum = mediaan. Mu ( μ) =
Geïdealiseerde dichtheidskromme
Standaardafwijking σ = spreiding (standaardafwijking van geïdealiseerde dichtheidskromme)
Voldoen aan de 68 – 95 – 99,7 regel
68% van de waarnemingen ligt binnen de afstand σ van μ.
95% van de waarnemingen ligt binnen de afstand 2 σ van μ.
99,7% van de waarnemingen ligt binnen de afstand 3σ van μ.
Korte notatie N( μ, σ )


3
$6.59
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
JitseDeC

Get to know the seller

Seller avatar
JitseDeC Vrije Universiteit Brussel
Follow You need to be logged in order to follow users or courses
Sold
12
Member since
2 year
Number of followers
5
Documents
38
Last sold
2 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions