100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Complete Solution Manual Fundamentals of Biostatistics 8th Edition Rosner Questions & Answers with rationales

Rating
4.0
(4)
Sold
26
Pages
453
Grade
A+
Uploaded on
18-06-2023
Written in
2022/2023

Fundamentals of Biostatistics 8th Edition Rosner Solutions Manual Complete Solution Manual Fundamentals of Biostatistics 8th Edition Rosner Questions & Answers with rationales PDF File All Pages All Chapters Grade A+

Institution
Fundamentals
Course
Fundamentals











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Fundamentals
Course
Fundamentals

Document information

Uploaded on
June 18, 2023
Number of pages
453
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

  • fundamentals

Content preview

Fundamentals of Biostatistics 8th Edition Rosner
Solutions Manual
Contents


Chapter 2 Descriptive Statistics........................................................................................................2

Chapter 3 Probability...................................................................................................................... 21

Chapter 4 Discrete Probability Distributions.................................................................................. 43

Chapter 5 Continuous Probability Distributions ............................................................................ 65

Chapter 6 Estimation ...................................................................................................................... 93

Chapter 7 Hypothesis Testing: One-Sample Inference ............................................................... 119

Chapter 8 Hypothesis Testing: Two-Sample Inference ............................................................... 146

Chapter 9 Nonparametric Methods .............................................................................................. 192

Chapter 10 Hypothesis Testing: Categorical Data ....................................................................... 216

Chapter 11 Regression and Correlation Methods ......................................................................... 267

Chapter 12 Multisample Inference ............................................................................................... 322

Chapter 13 Design and Analysis Techniques for Epidemiologic Studies ....................................358

Chapter 14 Hypothesis Testing: Person-Time Data ....................................................................413

, DESCRIPTIVE
STATISTICS
20.1 We have

x=
 xi = 215 = 8.6 days
n 25
(n + 1)
median = th largest observation = 13th largest observation = 8 days
2

20.2 We have that
25

(x − x)
2
i
( 5 − 8.6)2 + + ( 4 − 8.6)2 =
784
= 32.67
s2 = i=1 =
24 24 24

s = standard deviation = variance = 5.72 days
range = largest − smallest observation = 30 − 3 = 27 days

20.3 Suppose we divide the patients according to whether or not they received antibiotics, and calculate the
mean and standard deviation for each of the two subsamples:


x s n

Antibiotics 11.57 8.81 7

No antibiotics 7.44 3.70 18

Antibiotics - x7 8.50 3.73 6

It appears that antibiotic users stay longer in the hospital. Note that when we remove observation 7, the
two standard deviations are in substantial agreement, and the difference in the means is not that
impressive anymore. This example shows that x and s2 are not robust; that is, their values are easily
affected by outliers, particularly in small samples. Therefore, we would not conclude that hospital stay is
different for antibiotic users vs. non-antibiotic users.




2

,CHAPTER 2/DESCRIPTIVE STATISTICS 3



2.4-2.7 Changing the scale by a factor c will multiply each data value xi by c, changing it to cxi . Again the same
individual’s value will be at the median and the same individual’s value will be at the mode, but these
values will be multiplied by c. The geometric mean will be multiplied by c also, as can easily be shown:

Geometric mean = [(cx1)(cx2 ) (cxn )]1/n
= (cn x1  x2 xn )1/n
= c( x1  x2 xn )1/n
= c  old geometric mean

The range will also be multiplied by c.
For example, if c = 2 we have:

xi

Original Scale
–3 –2 –1 0 1 2 3
xi

Scale 2
–6 –4 –2 0 2 4 6

2.8 We first read the data file “running time” in R
> require(xlsx)
> running<-na.omit(read.xlsx("C:/Data_sets/running_time.xlsx",1,
header=TRUE))

Let us print the first observations
> head(running)
week time
1 1 12.80
2 2 12.20
3 3 12.25
4 4 12.18
5 5 11.53
6 6 12.47

The mean 1-mile running time over 18 weeks is equal to 12.09 minutes:
> mean(running$time)
[1] 12.08889

2.9 The standard deviation is given by
> sd(running$time)
[1] 0.3874181

2.10 Let us first create the variable “time_100” and then calculate its mean and standard deviation
> running$time_100=100*running$time
> mean(running$time_100)
[1] 1208.889

> sd(running$time_100)
[1] 38.74181

2.11 Let us to construct the stem-and-leaf plot in R using the stem.leaf command from the package “aplpack”
> require(aplpack)

, CHAPTER 2/DESCRIPTIVE STATISTICS 4



> stem.leaf(running$time_100, unit=1, trim.outliers=FALSE)

1 | 2: represents 12
leaf unit: 1
n: 18
2 115 | 37
3 116 | 7
5 117 | 23
7 118 | 03
8 119 | 2
(1) 120 | 8
9 121 | 8
8 122 | 05
6 123 | 03
4 124 | 7
3 125 | 5
2 126 | 7
127 |
1 128 | 0

Note: one can also use the standard command stem (which does require the “aplpack” package) to get a similar plot
> stem(running$time_100, scale = 4)
Box plot of running times

2.12 The quantiles of the running times are
12.8


> quantile(running$time) 12.6
0% 25% 50% 75% 100%
11.5300 11.7475 12.1300 12.3225 12.8000 12.4


An outlying value is identify has any value x such that
x  upper quartile+1.5  (upper quartile-lower quartile)
Time




12.2



= 12.32 +1.5  (12.32 −11.75) 12.0

= 12.32 + 0.85 = 13.17
11.8


Since 12.97 minutes is smaller than the largest nonoutlying value
(13.17 minutes), this running time recorded in his first week of 11.6


running in the spring is not an outlying value relative to the
distribution of running times recorded the previous year.

2.13 The mean is

x=
 xi = 469 = 19.54 mg dL
24 24

2.14 We have that
24

(x − x )
i
2

(49 −19.54)2 + + (12 −19.54)
2
6495.96
s2 = i=1
= = = 282.43
23 23 23
s = 282.43 = 16.81 mg/dL

2.15 We provide two rows for each stem corresponding to leaves 5-9 and 0-4 respectively. We have
$16.99
Get access to the full document:
Purchased by 26 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 4 reviews
1 month ago

11 months ago

1 year ago

1 year ago

1 year ago

We sincerely appreciate your outstanding 5-star review of this document. Your feedback means a great deal to us!

4.0

4 reviews

5
2
4
0
3
2
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
gradexam Chamberlain College Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
4923
Member since
3 year
Number of followers
3389
Documents
4041
Last sold
5 hours ago
Learning is hard, but with us it will be easier. You have made the right choice!

Grade Exam specializes in providing study guides that include exams, tests, past work, and quiz questions. We work on every aspect and take into account your wishes every day!

4.1

670 reviews

5
387
4
123
3
77
2
17
1
66

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions