100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Econometrics Summary - ENDTERM UVA EBE

Rating
5.0
(1)
Sold
1
Pages
10
Uploaded on
15-06-2023
Written in
2022/2023

This document is a summary of everything you need to know for the endterm (and midterm) of the course 'Econometrics' (6012B0453Y) at the University of Amsterdam, taught by Hans van Ophem. This document includes the following topics: log and ln, expected value, variance, covariance, estimators, simple regression, least squares, gauss-markov, homoskedasticity, TSS, SSR, ESS, R^2, hypothesis testing,multiple regression, adjusted R^2, omitted variable bias, functional form, multicollinearity, SER, interaction variables, F-test, scaling, validity, White test, Breusch-Godfrey test, Jarque-Bera test, endogenous regressors, instruments, IV-estimation, TSLS/2SLS, Hausman-Durbin-Wu test, Linear Probability Model, Maximum Likelihood, logit, probit, and more!

Show more Read less
Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Unknown
Uploaded on
June 15, 2023
Number of pages
10
Written in
2022/2023
Type
Summary

Subjects

Content preview

Econometrics Summary
Rules for log and ln
log 𝑏 (𝑐 ) = 𝑘 → 𝑏𝑘 = 𝑐
ln(𝑐 ) = log𝑒 (𝑐 ) = 𝑘 → 𝑒𝑘 = 𝑐

ln(𝑥𝑦) = ln(𝑥 ) + ln⁡(𝑦) ln(𝑒) = 1 1
𝑥 𝑥 −1 =
ln ( ) = ln(𝑥 ) − ln(𝑦) ln(1) = 0 𝑥
𝑦 1 √𝑥 = 𝑥 1/2
ln ( ) = −ln⁡(𝑥)
ln(𝑥 𝑦 ) = 𝑦 ∙ ln⁡(𝑥) 𝑥
Expected value
𝐸 (𝑋 + 𝑌 ) = 𝐸 (𝑋 ) + 𝐸 (𝑌 )
𝐸 (𝑋𝑌) = 𝐸 (𝑋) ∙ 𝐸(𝑌) → need independence!
𝐸 (∑𝑛𝑖=1 𝑥𝑖 ) = ∑𝑛𝑖=1 𝐸(𝑥𝑖 )⁡
𝐸 (𝑐 ∙ 𝑋) = 𝑐 ∙ 𝐸(𝑋)

Law of iterated expectations: 𝐸(𝛽̂1 ) = 𝐸 (𝐸(𝛽̂1 |𝑥)) = 𝐸 (𝛽1 ) = 𝛽1

Variance and covariance
𝜎𝑌2 = 𝑣𝑎𝑟(𝑌) = 𝐸 ((𝑌 − 𝑌̅ )2 ) = 𝐸 (𝑌 2 ) − 𝑌̅ 2
1 2
𝑆𝑌2 = ∑𝑛𝑖=1(𝑌𝑖 − 𝑌̅ )
𝑛−1

𝜎𝑋𝑌 = 𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸((𝑋 − 𝑋̅)(𝑌 − 𝑌̅)) = 𝐸 (𝑋𝑌) − 𝑋̅ 𝑌̅
1
𝑆𝑋𝑌 = ∑𝑛𝑖=1((𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅))
𝑛−1 Dependent
on scale
𝑣𝑎𝑟(𝑋 + 𝑌) = 𝑣𝑎𝑟(𝑋) + 𝑣𝑎𝑟(𝑌) + 2 ∙ 𝑐𝑜𝑣(𝑋, 𝑌)
𝑣𝑎𝑟(𝑐 ∙ 𝑋) = 𝑐 2 ∙ 𝑣𝑎𝑟(𝑋)
𝑣𝑎𝑟(𝑎 ∙ 𝑋 + 𝑏 ∙ 𝑌) = 𝑎2 ∙ 𝑣𝑎𝑟(𝑋) + 𝑏2 ∙ 𝑣𝑎𝑟(𝑌) + 2𝑎𝑏 ∙ 𝑐𝑜𝑣(𝑋, 𝑌)

𝑐𝑜𝑣(𝑋, 𝑋) = 𝑣𝑎𝑟(𝑋)
𝑐𝑜𝑣(𝑎 ∙ 𝑋, 𝑏 ∙ 𝑌) = 𝑎𝑏 ∙ 𝑐𝑜𝑣(𝑋, 𝑌)
𝑐𝑜𝑣(𝑎𝑋 + 𝑏𝑌 + 𝑐, 𝑤) = 𝑎 ∙ 𝑐𝑜𝑣(𝑋, 𝑤) + 𝑏 ∙ 𝑐𝑜𝑣(𝑌, 𝑤)

Estimators → are random!
We try to estimate a population parameter. This is usually unknown, except in a Monte Carlo
Analysis.
• Unbiasedness: 𝐸 (𝑋̅) = 𝜇
• Consistency: 𝑣𝑎𝑟(𝑋̅) → 0 as 𝑛 → ∞
AND the estimator is asymptotically (“as 𝑛 → ∞”) unbiased!
Simple regression
𝑌𝑖 = 𝛽0 + 𝛽1 𝑋𝑖 + 𝑢𝑖 (population)
→ 𝛽1 measures the unit change in 𝑌, per unit change in 𝑋

We estimate 𝛽0 and 𝛽1 by min ∑𝑒𝑖2
𝑌̂𝑖 = 𝛽̂0 + 𝛽̂1 𝑋𝑖 (fitted value)
𝑒𝑖 = 𝑢̂𝑖 = 𝑌𝑖 − 𝑌̂𝑖 = 𝑌𝑖 − 𝛽̂0 − 𝛽̂1 𝑋𝑖
2
min ∑𝑒𝑖2 = min ∑(𝑌𝑖 − 𝛽̂0 − 𝛽̂1 𝑋𝑖 )
1. Take the first derivative with respect to 𝛽0 and/or 𝛽1
2. Set equal to 0 and solve for 𝛽0 or 𝛽1

𝛽̂0 = 𝑌̅ − 𝛽̂1 𝑋̅
𝑠 𝑠𝑎𝑚𝑝𝑙𝑒⁡𝑐𝑜𝑣(𝑌,𝑋) ∑(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅ )
𝛽̂1 = 𝑠𝑌𝑋
2 = 𝑠𝑎𝑚𝑝𝑙𝑒⁡𝑣𝑎𝑟(𝑋) =
𝑋 ∑(𝑋 −𝑋̅)2
𝑖

Least Squares Assumptions
1) 𝜀𝑖 is a random variable with 𝐸 (𝜀𝑖 |𝑋) = 0
2) (𝑌𝑖 , 𝑋𝑖 ) are i.i.d.
3) Large outliers are unlikely → finite nonzero 4th moments → kurtosis is finite


1

Reviews from verified buyers

Showing all reviews
2 year ago

2 year ago

Thank you for the rating! Good luck on the exam!

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Helena0207 Universiteit van Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
269
Member since
3 year
Number of followers
171
Documents
75
Last sold
1 day ago

4.2

42 reviews

5
22
4
11
3
7
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions