100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

sujet grand oral bac (2021) : maths (thème architecture) SUITE DE FIBONACCI & NOMBRE D'OR : COMMENT UN ARCHITECTE UTILISE T IL DES NOTIONS MATHÉMATIQUES POUR CONSTRUIRE UN BÂTIMENT ESTHÉTIQUE ET CONFORME À SA VISION

Rating
3.7
(3)
Sold
45
Pages
3
Grade
Satisfaisant
Uploaded on
13-06-2023
Written in
2020/2021

SUITE DE FIBONACCI & NOMBRE D'OR : COMMENT UN ARCHITECTE UTILISE T IL DES NOTIONS MATHÉMATIQUES POUR CONSTRUIRE UN BÂTIMENT ESTHÉTIQUE ET CONFORME À SA VISION

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Secondary school
Study
Lycée
Course
School year
1

Document information

Uploaded on
June 13, 2023
Number of pages
3
Written in
2020/2021
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

SUITE DE FIBONACCI & NOMBRE D'OR
COMMENT UN ARCHITECTE UTILISE-T-IL DES NOTIONS MATHÉMATIQUES POUR
CONSTRUIRE UN BÂTIMENT ESTHÉTIQUE ET CONFORME À SA VISION

[intro]

Mon intérêt, pour l'architecture et les mathématiques m'ont amené à penser à un sujet, traitant de la suite de
Fibonacci et du nombre d'or.
Ainsi, durant cette présentation, nous verrons : comment un architecte utilise-t-il des notions mathématiques
pour construire un bâtiment esthétique et conforme à sa vision.
Pour cela, nous étudierons la suite de Fibonacci, afin de la mettre en relation avec le nombre d'or. Et pour
finir/terminer , avec l'architecture.
[Mais] tout d'abord, un peu d'histoire des mathématiques avec Leonardo de Pise, plus connu sous le nom de
Leonardo Fibonacci,

[...]

1. La suite de Fibonacci

*Né en 1175, le mathématicien italien Fibonacci, auteur de Liber Abaci publié en 1202, introduit dans son
ouvrage, la suite de Fibonacci comme un problème récréatif.
De nos jours, celle-ci peut être considérée comme le tout premier modèle mathématique en dynamique des
populations.
En effet, elle y décrit la croissance d'une population de lapins, mais plus précisément sur le nombre de lapins
qui pouvaient naître en 1 an à partir d'un unique couple.

Cependant, des conditions s'imposent :
- les lapins ne peuvent procréer qu'après 2 mois d'existence
- chaque couple produit chaque mois un nv couple
- les lapins ne meurent jamais
=> Alors, en tenant compte de la fertilité des espèces, la solution qu'il propose apparaît ainsi :
- lors du 1er mois, nous avons le couple de lapins d'origine
- lors du 2e mois, nous avons toujours que ce même couple
- mais lors du troisième mois on a (déjà) 2 couples,
- puis 3 le quatrième mois
- et 5 lors du cinquième mois
Bien sûr, ce mécanisme appliqué est le même pour les mois suivants. Rappelons tout de même que
par définition, une suite est une « succession » de nombres réels, appelés « termes » de la suite. La
notation Un est la notation indicielle, où n désigne l’indice ou le rang.

Ici, ces 5 couples de ces 5 premiers mois représentent les 6 premiers termes de la suite de Fibonacci,
*6 car la suite est définit à partir de 0 et 1, de ce fait nous savons que les deux 1er termes sont 0 et
1*
ainsi, les 6 premier termes de la suite sont donc : 0;1;1;2;3;5
On en conclut que la croissance de cette population, est bel et bien décrite par la suite de Fibonacci.
On s'aperçoit que chaque terme de cette suite, à partir du 3e correspond à la sommes des deux
précédent, c-à-d que U2 = U1 + U0
On peut alors poser la relation suivante [avec n appartenant à l'ensemble d'entier naturel, grâce à la
définition de la suite de Fibonacci] :
Un+2 = Un+1 + Un ou encore Un = Un-1 + Un-2
Ainsi, grâce à cette formule, nous pouvons calculer les premiers termes de la suite

(ex avec U2 = U1 + U0 avec U1=1 et U0 = 0 <=> U2 = 1 + 0 donc U2 = 1.. )
$7.89
Get access to the full document:
Purchased by 45 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing all 3 reviews
7 months ago

1 year ago

1 year ago

3.7

3 reviews

5
0
4
2
3
1
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
fabianieraf Faculté d\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Follow You need to be logged in order to follow users or courses
Sold
76
Member since
2 year
Number of followers
51
Documents
2
Last sold
6 months ago

3.8

11 reviews

5
2
4
6
3
2
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions