100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary of lecture notes and textbook

Rating
-
Sold
-
Pages
37
Uploaded on
04-06-2023
Written in
2022/2023

Summary of lecture notes and textbook from weeks 1-6

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Unknown
Uploaded on
June 4, 2023
Number of pages
37
Written in
2022/2023
Type
Summary

Subjects

Content preview

PROPERTY AND POWER: Mutual Gains and Conflict
Bargaining, Institutions and Allocations (Unit 5)
WEEK 2 : Calculus behind MRS and MRT

Angela’s Optimisation Problem

Maximise U= U(t,B) subject to B=f(24-t)

To solve this find : MRS=MRT

Marginal Rate of Substitution

U=U(t,B)

MRS= |slope of IC| = |∆B/∆t|




For a specific utility level (c) we can represent the indifference curve as U(t,B)=c

dU
>0
dt
dU
>0
dB
dU dU
∆u≈ ∆ t+ ∆B
dt dB
dU dU
∆ t+ ∆ B=0
dt dB
dU

∆B dt −dU dB
= = x
∆t dU dt dU
dB



| ||
dU
MRS=
dt
dU
=
−dU dB
dt
x
dU |
dB

This helps explain why the MRS at A > MRS at B

At point B, we have so much free time that the implication is my marginal utility of free time
is quite low whilst my marginal utility of grain is quite high – makes the slope/MRS quite flat

,This contrasts with point A, we have little free time so my marginal utility of free time is
quite high and my marginal utility of grain is very low – my slope is steeper than B




Quasi-linear Preferences
LEIBNIZ 5.4.1

Angela is a farmer who values two things: grain (which she consumes) and free time.

In Unit 5 we assume that her preferences with respect to these two goods have a special
property: she values grain at some constant amount relative to free time, independently
of how much grain she already has. This Leibniz shows how to capture that property
mathematically.

In earlier Leibnizes we have made extensive use of the Cobb-Douglas utility function. We
now explore an alternative: the quasi-linear utility function.

Let t be Angela’s daily hours of free time, and c the number of bushels of grain that she
consumes per day. We assume, as in the main text, that the rate at which Angela is willing to
exchange grain for free time remains constant as her consumption of grain increases.

In other words, her marginal rate of substitution between hours of free time and bushels of
grain depends only on the free time and not at all on the grain. We have sketched indifference
curves with this property in Figure 1. For any given amount of free time, say t 0 , the slope of
the indifference curve at the point ( t 0 , c ) is the same for all c, which means that the tangent
lines in the figure are parallel.

Figure 1: Indifference curves with the property that MRS depends only on free time

,Quasi-linear Preferences
LIEBNIZ 5.4.1

A utility function with the property that the marginal rate of substitution (MRS) between and
depends only on is:

U ( t , c )=v ( t ) +c




where v is an increasing function: v’(t)>0 because Angela prefers more free time to less. This is called
a quasi-linear function because utility is linear in c and some function of t. We now show that this
utility function has the required property.


Angela’s marginal rate of substitution (MRS) between free time and consumption of grain is defined
as in Leibniz 3.2.1 as the absolute value of the slope of the indifference curve through the point (t, c).
It may be found by the formula we derived in the earlier Leibniz:

∂U
/∂ U
∂t
MRS=
∂c

, ∂U ∂U
In this case, =v ' ( t ) and =1, so
∂t ∂c

MRS=v ' ( t )

The same result can be obtained directly, without using the general formula. Each indifference curve is
of the form

v ( t ) +c=constant


Or c=k−v ( t ) , where k is a constant. Therefore


dc '
=−v ( t ) <0
dt



along an indifference curve. The curve slopes downwards and the absolute value of the slope is . Thus
the MRS is a function of alone, as we wished to prove.


In Figure 1, the indifference curves have the usual property of diminishing MRS, flattening as you
move to the right. For this to happen, v’(t) must fall as t increases. Thus v”(t)<0 : v is a concave
function. Because indifference curves are of the form ' c=constant−v (t)' , any two of them differ
by a constant vertical distance, as you can see in Figure 1. The reason why the curves in the diagram
bunch together horizontally at large values of c is simply that they are steeper there.




Quasi-linear Preferences
LIEBNIZ 5.4.1 SUMMARY

To summarize: the utility function

U ( t , c )=v ( t ) +c

where the function v is increasing and concave, is called quasi-linear. Using a utility function of this
form means that we are making a restrictive assumption about preferences, but it has a very useful
implication. Because utility is of the form ‘c + something’, it is measured in the same units as
consumption. Angela values t hours of free time as much as v(t) bushels of grain.
$4.56
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
taylor_franken

Get to know the seller

Seller avatar
taylor_franken University of Cape Town
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
3
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions