100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

AQA A-level MATHEMATICS 7357/3 Paper 3 Question Paper + Mark scheme [MERGED] June 2022 PB/Jun22/E7 7357/3 (JUN) A-level MATHEMATICS Paper 3 Time allowed: 2 hours Materials

Rating
-
Sold
-
Pages
67
Grade
A+
Uploaded on
26-05-2023
Written in
2022/2023

AQA A-level MATHEMATICS 7357/3 Paper 3 Question Paper + Mark scheme [MERGED] June 2022 PB/Jun22/E7 7357/3 (JUN) A-level MATHEMATICS Paper 3 Time allowed: 2 hours Materials l You must have the AQA Formulae for A‑level Mathematics booklet. l You should have a graphical or scientific calculator that meets the requirements of the specification. Instructions l Use black ink or black ball-point pen. Pencil should only be used for drawing. l Fill in the boxes at the top of this page. l Answer all questions. l You must answer each question in the space provided for that question. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). l Do not write outside the box around each page or on blank pages. l Show all necessary working; otherwise marks for method may be lost. l Do all rough work in this book. Cross through any work that you do not want to be marked. Information l The marks for questions are shown in brackets. l The maximum mark for this paper is 100. Advice l Unless stated otherwise, you may quote formulae, without proof, from the booklet. l You do not necessarily need to use all the space provided. Please write clearly in block capitals. Centre number Candidate number Surname ________________________________________________________________________ Forename(s) ________________________________________________________________________ Candidate signature ________________________________________________________________________ For Examiner’s Use Question Mark 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 TOTAL I declare this is my own work. 2 Section A Answer all questions in the spaces provided. 1 State the range of values of x for which the binomial expansion of ffiffiffiffiffiffiffiffiffiffiffi 1  x 4 r is valid. Circle your answer. [1 mark] jxj < 1 4 jxj < 1 jxj < 2 jxj < 4 Jun22/7357/3 Do not write outside the box (02) 3 2 The shaded region, shown in the diagram below, is defined by x2  7x þ 7  y  7  2x O 5 x y Identify which of the following gives the area of the shaded region. Tick (3) one box. [1 mark] ð (7  2x) dx  ð (x2  7x þ 7) dx ð5 0 (x2  5x) dx ð5 0 (5x  x2) dx ð5 0 (x2  9x þ 14) dx Turn over for the next question Do not write outside the box Jun22/7357/3 Turn over s (03) 4 3 The function f is defined by f (x) ¼ 2x þ 1 Solve the equation f (x) ¼ f 1ðx) Circle your answer. [1 mark] x ¼ 1 x ¼ 0 x ¼ 1 x ¼ 2 4 Find ð x2 þ x 1 2   dx [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 (04) 5 5 (a) Sketch the graph of y ¼ sin 2x for 0  x 360 O x y 90° 180° 270° 360° [2 marks] 5 (b) The equation sin 2x ¼ A has exactly two solutions for 0  x 360 State the possible values of A. [1 mark] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 Turn over s (05) 6 6 A design for a surfboard is shown in Figure 1. Figure 1 length width The curve of the top half of the surfboard can be modelled by the parametric equations x ¼ 2t 2 y ¼ 9t  0:7t2 for 0  t  9:5 as shown in Figure 2, where x and y are measured in centimetres. Figure 2 O y x 6 (a) Find the length of the surfboard. [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 (06) 7 6 (b) (i) Find an expression for dy dx in terms of t. [3 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 6 (b) (ii) Hence, show that the width of the surfboard is approximately one third of its length. [4 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 Turn over s (07) 8 7 A planet takes T days to complete one orbit of the Sun. T is known to be related to the planet’s average distance d, in millions of kilometres, from the Sun. A graph of log10 T against log10 d is shown with data for Mercury and Uranus labelled. log10 T log10 d Uranus (3.46, 4.49) Mercury (1.76, 1.94) 7 (a) (i) Find the equation of the straight line in the form log10 T ¼ a þ b log10 d where a and b are constants to be found. [3 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 (08) 9 7 (a) (ii) Show that T ¼ K d n where K and n are constants to be found. [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 7 (b) Neptune takes approximately 60 000 days to complete one orbit of the Sun. Use your answer to 7(a)(ii) to find an estimate for the average distance of Neptune from the Sun. [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Turn over for the next question Do not write outside the box Jun22/7357/3 Turn over s (09) 10 8 Water is poured into an empty cone at a constant rate of 8 cm3/s After t seconds the depth of the water in the inverted cone is h cm, as shown in the diagram below. h When the depth of the water in the inverted cone is h cm, the volume, Vcm3, is given by V ¼ ph3 12 8 (a) Show that when t ¼ 3 dV dh ¼ 6 ffiffiffiffiffiffi 6p p3 [4 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 (10) 11 _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 8 (b) Hence, find the rate at which the depth is increasing when t ¼ 3 Give your answer to three significant figures. [3 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 Turn over s (11) 12 9 Assume that a and b are integers such that a2  4b  2 ¼ 0 9 (a) Prove that a is even. [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 9 (b) Hence, prove that 2b þ 1 is even and explain why this is a contradiction. [3 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 (12) 13 9 (c) Explain what can be deduced about the solutions of the equation a2  4b  2 ¼ 0 [1 mark] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Turn over for the next question Do not write outside the box Jun22/7357/3 Turn over s (13) 14 10 The function f is defined by f (x) ¼ x2 þ 10 2x þ 5 where f has its maximum possible domain. The curve y ¼ f (x) intersects the line y ¼ x at the points P and Q as shown below. x y = f (x) y = x O Q P y 10 (a) State the value of x which is not in the domain of f. [1 mark] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 (14) 15 10 (b) Explain how you know that the function f is many-to-one. [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 10 (c) (i) Show that the x-coordinates of P and Q satisfy the equation x2 þ 5x  10 ¼ 0 [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 10 (c) (ii) Hence, find the exact x-coordinate of P and the exact x-coordinate of Q. [1 mark] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 Turn over s (15) 16 10 (d) Show that P and Q are stationary points of the curve. Fully justify your answer

Show more Read less
Institution
MATHEMATICS
Course
MATHEMATICS











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
MATHEMATICS
Course
MATHEMATICS

Document information

Uploaded on
May 26, 2023
Number of pages
67
Written in
2022/2023
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Pristine01 Chamberlain College Nursing
View profile
Follow You need to be logged in order to follow users or courses
Sold
1472
Member since
2 year
Number of followers
910
Documents
1832
Last sold
6 hours ago
Ace Your Exams with Expertly Crafted Study Materials!

Looking to level up your revision? I offer comprehensive, easy-to-understand study materials tailored for major exam boards including AQA, OCR, Edexcel, and more, perfect for A-Level, GCSE, and other courses. ✨ What You’ll Get: 1. Concise summaries and clear explanations 2. * Past exam papers with complete official marking schemes * Whether you need quick revision notes, detailed study guides, or real past papers to test your knowledge, I’ve got you covered. These resources are designed to help you study smarter and achieve top grades.

Read more Read less
4.4

291 reviews

5
201
4
51
3
20
2
3
1
16

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions