H4. Conformeren
1. Stabiliteit
Conformeren = de verschillende ruimtelijke structuren die organische moleculen kunnen aannemen
zonder dat daarvoor een chemische binding moet worden gebroken
➔ Dus dezelfde moleculen maar die gedraaid zijn in een andere stand
➔ Conformaties ontstaan enkel door rotatie rond σ-bindingen (enkelvoudige bindingen)
➔ Bv. C6H12:
➔ Linkse conformatie = een stoelvorm
➔ Rechtse conformatie = een bootvorm
→ Je moet geen bindingen breken om van de ene naar
de andere vorm te gaan (gewoon plooien)
De conformatie met de laagste energie is het meest stabiel
→ Verschillende energieparameters:
1. Torsie-spanning of Pitzerspanning
- = De energie toename die ontstaat wanneer je van geschrankt naar geëclipseerde
toestand gaat
- Geschrankte toestand vs geëclipseerde toestand
→ Geschrankt (= staggered): de torsie-spanning is laag
→ Geëclipseerd: de torsie-spanning is hoog
- Bv. CH3-CH3 :
➔ Elektronen zijn negatief geladen waardoor ze elkaar
afstoten + liefst zo ver mogelijk uit elkaar liggen
→ In de geschrankte toestand liggen de e- verder van
elkaar dan in de geëclipseerde toestand
➔ Dus door de afstoting van de e- in de σ-bindingen is
de geschrankte toestand minder energetisch (dus
stabieler) dan de geëclipseerde toestand
→ De energie stijgt bij afwijking van een geschrankte
toestand
- Butaan (CH3-CH2-CH2-CH3):
➔ Anti (geschrankt): = 180°
→ Laagste energie: lage torsiespanning +
geen sterische hindering
➔ Gauche (geschrankt): = 60°
➔ Geëclipseerd: = 0°
→ Hoogste energie: hoge torsiespanning +
sterische hindering
➔ Gedeeltelijk geëclipseerd: = 120°
➔ De geëclipseerde vorm waarbij de 2 CH3’s
0° uit elkaar liggen is minder stabiel dan de
geëclipseerde vorm waarbij de CH3’s 120°
uit elkaar liggen
➔ De geschrankte vormen hebben sowieso
altijd een lagere energie dan de
geëclipseerde vormen!
1. Stabiliteit
Conformeren = de verschillende ruimtelijke structuren die organische moleculen kunnen aannemen
zonder dat daarvoor een chemische binding moet worden gebroken
➔ Dus dezelfde moleculen maar die gedraaid zijn in een andere stand
➔ Conformaties ontstaan enkel door rotatie rond σ-bindingen (enkelvoudige bindingen)
➔ Bv. C6H12:
➔ Linkse conformatie = een stoelvorm
➔ Rechtse conformatie = een bootvorm
→ Je moet geen bindingen breken om van de ene naar
de andere vorm te gaan (gewoon plooien)
De conformatie met de laagste energie is het meest stabiel
→ Verschillende energieparameters:
1. Torsie-spanning of Pitzerspanning
- = De energie toename die ontstaat wanneer je van geschrankt naar geëclipseerde
toestand gaat
- Geschrankte toestand vs geëclipseerde toestand
→ Geschrankt (= staggered): de torsie-spanning is laag
→ Geëclipseerd: de torsie-spanning is hoog
- Bv. CH3-CH3 :
➔ Elektronen zijn negatief geladen waardoor ze elkaar
afstoten + liefst zo ver mogelijk uit elkaar liggen
→ In de geschrankte toestand liggen de e- verder van
elkaar dan in de geëclipseerde toestand
➔ Dus door de afstoting van de e- in de σ-bindingen is
de geschrankte toestand minder energetisch (dus
stabieler) dan de geëclipseerde toestand
→ De energie stijgt bij afwijking van een geschrankte
toestand
- Butaan (CH3-CH2-CH2-CH3):
➔ Anti (geschrankt): = 180°
→ Laagste energie: lage torsiespanning +
geen sterische hindering
➔ Gauche (geschrankt): = 60°
➔ Geëclipseerd: = 0°
→ Hoogste energie: hoge torsiespanning +
sterische hindering
➔ Gedeeltelijk geëclipseerd: = 120°
➔ De geëclipseerde vorm waarbij de 2 CH3’s
0° uit elkaar liggen is minder stabiel dan de
geëclipseerde vorm waarbij de CH3’s 120°
uit elkaar liggen
➔ De geschrankte vormen hebben sowieso
altijd een lagere energie dan de
geëclipseerde vormen!