100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting - Farmacologie (FCOL) (BFW, Universiteit Leiden)

Rating
-
Sold
2
Pages
56
Uploaded on
08-05-2023
Written in
2022/2023

Een samenvatting voor het vak farmacologie voor 2e-jaars bio-farmaceutische wetenschappen studenten aan Universiteit Leiden.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 8, 2023
Number of pages
56
Written in
2022/2023
Type
Summary

Subjects

Content preview

Samenvatting farmacologie

College 1: Non-continuous data
Leerdoelen:
1. Kunnen omschrijven wat non-continuous uitkomst metingen zijn en voorbeelden
kunnen geven
2. Op basis van de omschrijving, de non-continuous uitkomst metingen kunnen
identificeren als binary, non(ordered) categorical, time-to-event/survival of count.
3. Kunnen uitleggen hoe de farmacodynamiek van een drug gekwantificeerd wordt naar
een non-continuous meting
4. Een fysiologische of farmacologische interpretatie of model-based resultaten of een
grafische output van een farmacologisch experiment kunnen uitleggen met non-
continuous metingen.

- Continuous data
=> Data dat gemeten is op een continuous schaal.
o Bloeddruk, hartritme, concentratie-effect (vaak Emax in sigmoïde curve),
% inhibitie van een enzym

- Non-continuous data
=> Data die zijn geteld of graded en hebben discrete waarden.
1.) Binaire data
=> Wel of geen effect (Ja of nee), vaak alleen 2 uitkomsten mogelijk.
2.) Geordende categorische data
=> Nog steeds beperkt aantal waardes mogelijk, maar wel meer dan 2. Daarnaast
is het mogelijk om de waardes te rangschikken (Ernstig, gemiddeld, zwak).
3.) Niet-geordende categorische data
=> Nog steeds beperkt aantal waardes mogelijk, maar wel meer dan 2. De
waardes zijn NIET te rangschrikken op een logische volgorde (Slaapstadium, de
slaapstages zijn wel genummerd van 1 t/m 4, maar zijn “onafhankelijk” van
elkaar, geen volgorde).
4.) Time-to-event/survival data
=> Hierbij wordt aangegeven hoelang het duurt totdat een bepaalt event
plaatsvindt.
In principe wordt tijd gemeten op een continuous schaal, maar analyse is toch
anders dan continuous data.
Bijvoorbeeld: Hoelang duurt het totdat iemand doodgaat, hoelang voordat een
ziekte zich ontwikkelt, duratie van hospitalisatie.
5.) Count data
=> Hoe vaak vindt een bepaald event plaats (binnen een individu) (Nummer van
aanvallen per week)




- Binaire data (logistic functions)

, o Het effect is gekwantificeerd als probability (kans dat iets plaatsvindt als een
medicijn wordt ingenomen).
 Als voorbeeld is de kans of je slaapt of niet. 0 = wakker en 1 = slapend
 Opvallend is dat de probability dezelfde sigmoïd vorm heeft als
concentratie-effect relatie van continuous data.




o De formule geeft de kans dat y = 1.
I.p.v. een concentratie-effect, hebben we nu concentratie-probability effect
relatie => Logistisch model.
Formule is in principe hetzelfde zoals de concentratie-effect, maar E max bij
logistisch model is = 1, dus dat valt weg.
 EC50 = De drugconcentratie waarbij er 50% kans is dat er een
slaapresponse is.
 Gamma = Vertelt iets over de variabiliteit. Als gamma groot is, dan is
de functie steil, en heb je dus een lage variabiliteit.
 Hoe steiler de grafiek (bij de EC50), des de groter gamma is en
dus is de variabiliteit lager.
 Hoe minder steil de grafiek, des de lager gamma is en dus is de
variabiliteit hoger.
o Om de probabilities te meten, heb je meerdere individuen nodig, 1 individu is
niet genoeg om probablities te meten.




- Geordende categorische data (logistic functions)

, o Het logistische model wordt hiervoor ook gebruikt om de relatie tussen de
concentratie en probability te bepalen met een score dat groter/kleiner moet
zijn dan bepaalde referentie score.
o Voor n categorieën, heb je n-1 probability curves nodig om het te definiëren.
o Voorbeeld:
Voor een meting van 3 categorieën (scores van 1 = geen effect, 2 = beetje
effect en 3 = veel effect):
Dan moeten we P (Y > 1) & P (Y > 2) definiëren.
 P (Y > 1) => Kans dat een score groter is dan 1
 P (Y > 2) => Kans dat een score groter is dan 2
o Dus P (Y > 1) & P (Y > 2) worden gedefinieerd met een logistisch model:
 P(Y = 1) = 1 – (P > 1)
 Als de kans dat een score groter dan 1 is gelijk is aan 40%,
dan is de kans dat de score daadwerkelijk 1 is = 1 – 0.4 = 0.6
(60%).
 P(Y = 2) = P (Y > 1) – P (Y > 2)
 Als de kans dat een score groter dan 1 is gelijk is aan 20%, en
de kans dat een score groter dan 2 is gelijk is aan 10%.
Dan is de kans dat een score daadwerkelijk 2 is = 0.2 – 0.1 = 0.1
(10%).
(Want P (Y > 1) = P (Y = 2), alleen de kans dat de score groter
dan 2 is moet nog weggehaald worden zodat je alleen de
“kanszone” hebt dat daadwerkelijk 2 is)
 P(Y = 3) = P (Y > 2)
 Notatie oefening voor jezelf: Definieer: P (Y < 2) & P (Y < 3)




- Time-to-event/survival data (hazard functions)

, o Voorbeelden van events van time-to-event data:
 Dood, hospitalisatie, ontslagen uit ziekenhuis, ziekteprogressie,
bijwerkingen etc.
Maar hoe heeft drug exposure invloed op de tijd van de events?
o De Kaplan-Meier plot is gebaseerd op observaties, en kan NIET worden
gebruikt voor voorspellingen (non-parametrisch/descripties).
o Ook kan je niet de invloed van tijd-variërende covarianties onderzoeken.
o Hoe groter de dosis van het geneesmiddel, des de groter het percentage van
overlevenden.




o Survival functie S(t)
=> Kans dat time of event (T) plaatsvindt na een bepaalde (geobserveerd) tijd
(t). S(t) = P(T > t)

o Cumulatieve survival functie F(t)
=> Kans dat de time of event (T) plaats heeft gevonden voor een bepaalde
(geobserveerde) tijd. F(t) = P(T ≤ t) = 1 – S(t)

o Hazard H(t)
=> Kans dat een spontaan event plaatsvindt op elk gegeven punt in tijd (t),
geconditioneerd over de survival op die tijd (dit is niet tussen 0 en 1!).
Het is een risico factor.
 Eenheid van hazard = … / tijd, of tijd-1
$6.27
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Donron2 Universiteit Leiden
Follow You need to be logged in order to follow users or courses
Sold
26
Member since
2 year
Number of followers
7
Documents
12
Last sold
6 days ago
Dictaten/samenvattingen voor bio-farmaceutische wetenschappen studenten

Verkoop van dictaten, samenvattingen, verslagen voor de bacheloropleiding bio-farmaceutische wetenschappen aan de Universiteit Leiden.

4.6

5 reviews

5
4
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions