MAT2691 – SOLUTIONS – ASSIGNMENT 3 – SEMESTERS 1+2
MPHO DIKO: TUTOR
TOTAL MARKS = 43
QUESTION 1 [marks = 3]
3 1 1
Given A and B . Determine AB and BA.
4 7 5
SOLUTION
For AB:
Putting the orders of A and B in juxtaposition (i.e. side by side): 2 2 2 1.
Therefore, the product AB exists (i.e. it is defined or it is possible to compute it).
3 1 1
AB
4 7 5
31 1 5
4 1 7 5
8
31
For BA:
The orders of B and A: 2 1 2 2
Therefore, the product BA does not exist!
Page 1 of 8
, QUESTION 2 [marks = 10]
1 2 3 1
Given X and Y , show that X Y X Y X Y
2 2
0 3 2 1
SOLUTION
1 2 3 1 2 1
XY
0 3 2 1 2 2
1 2 3 1 1 2 3 1 4 3
XY
0 3 2 1 0 3 2 1 2 4
2 1 4 3 2 4 1 2 2 3 1 4 6 2
X Y X Y
2 2 2 4 2 4 2 2 2 3 2 4 4 2
1 2 1 2 11 2 0 1 2 2 3 1 8
X2 =
0 3 0 3 0 1 3 0 0 2 3 3 0 9
3 1 3 1 3 3 1 2 31 1 1 11 4
Y2
2 1 2 1 2 3 1 2 2 1 1 1 8 3
1 8 11 4 1 8 11 4 10 4
X2 Y2
0 9 8 3 0 9 8 3 8 6
Therefore,
6 2 10 4
4 6 8 6
Page 2 of 8
MPHO DIKO: TUTOR
TOTAL MARKS = 43
QUESTION 1 [marks = 3]
3 1 1
Given A and B . Determine AB and BA.
4 7 5
SOLUTION
For AB:
Putting the orders of A and B in juxtaposition (i.e. side by side): 2 2 2 1.
Therefore, the product AB exists (i.e. it is defined or it is possible to compute it).
3 1 1
AB
4 7 5
31 1 5
4 1 7 5
8
31
For BA:
The orders of B and A: 2 1 2 2
Therefore, the product BA does not exist!
Page 1 of 8
, QUESTION 2 [marks = 10]
1 2 3 1
Given X and Y , show that X Y X Y X Y
2 2
0 3 2 1
SOLUTION
1 2 3 1 2 1
XY
0 3 2 1 2 2
1 2 3 1 1 2 3 1 4 3
XY
0 3 2 1 0 3 2 1 2 4
2 1 4 3 2 4 1 2 2 3 1 4 6 2
X Y X Y
2 2 2 4 2 4 2 2 2 3 2 4 4 2
1 2 1 2 11 2 0 1 2 2 3 1 8
X2 =
0 3 0 3 0 1 3 0 0 2 3 3 0 9
3 1 3 1 3 3 1 2 31 1 1 11 4
Y2
2 1 2 1 2 3 1 2 2 1 1 1 8 3
1 8 11 4 1 8 11 4 10 4
X2 Y2
0 9 8 3 0 9 8 3 8 6
Therefore,
6 2 10 4
4 6 8 6
Page 2 of 8