TYPE OF RELATIONS DEFINITION OF FUNCTION 2. h( N ) =
2Nd -
12N + 22 ,
n C- 7
f- ( n ) not f- Cu ) Function is a
special relation where every
object in a domain has only one image .
(a) Empress hln ) in the form
a. > • e a . > • e
known
T alntb )
'
as a
mapping .
to .
b• > • f b • > • f-
>
> as 9
Use the method of completing
c. •
c. •
>
h
d. > • • h
FUNCTION NOTATION the square .
Use small letter : f. g. h or something else .
to to
one one one many )
-
2( n
- - -
hln ) -6m
'
= + 11
f- (n)
f- E) (f) 2+11
> fin > 2m or = 2N = 2 n
'
-6m +
2-
a • > • e
9 > d
g-
• •
b• > f-
214-372-9+11 ]
•
f- maps
>
b. • e e say
: N Onto 2N
Functions
c. • > • 9 7
(n
2
> c. > • f N = 2 -
3) t 4
d.
to one to (b) Find the range
many many many
-
- - -
Least value of hln ) :
DOMAIN & RANGE hln )
> Ot 4
=
V
L 2cm 3)
'
-
cannot be
EXAMPLE - domain & range >
Domain is the input set .
less than zero .
Range is the output set 1 .
Find the range of these functions .
Range : h( a) 34
n flu )
(a ) flu ) = Nt 5 ,
n > 5
1
•
Given domain is n 715
I • > • 2
jg take
3
a.
•
least value of f- In ) :
> • ↳ Range
3.
• 5 ( or Image ) f- ( n ) =
51-5=10
>
• 6
• 7
Range : flu ) 310
// 0W
Domain Codomain
(b) gln )
} Em < 4
Linking
= U -2
,
Domain =
{ 11213 }
Given domain is -2 c- n< 4 to
codomain = { 1,2 , 3. 4,516,7 }
Range -8 sgln)< 64
appen
:
Range = { 214,6 }
L v
3
C- 2)
3
(4)
A- RIFF AIN FARIHA
, ,
IFFAH ,
ALYAA
2Nd -
12N + 22 ,
n C- 7
f- ( n ) not f- Cu ) Function is a
special relation where every
object in a domain has only one image .
(a) Empress hln ) in the form
a. > • e a . > • e
known
T alntb )
'
as a
mapping .
to .
b• > • f b • > • f-
>
> as 9
Use the method of completing
c. •
c. •
>
h
d. > • • h
FUNCTION NOTATION the square .
Use small letter : f. g. h or something else .
to to
one one one many )
-
2( n
- - -
hln ) -6m
'
= + 11
f- (n)
f- E) (f) 2+11
> fin > 2m or = 2N = 2 n
'
-6m +
2-
a • > • e
9 > d
g-
• •
b• > f-
214-372-9+11 ]
•
f- maps
>
b. • e e say
: N Onto 2N
Functions
c. • > • 9 7
(n
2
> c. > • f N = 2 -
3) t 4
d.
to one to (b) Find the range
many many many
-
- - -
Least value of hln ) :
DOMAIN & RANGE hln )
> Ot 4
=
V
L 2cm 3)
'
-
cannot be
EXAMPLE - domain & range >
Domain is the input set .
less than zero .
Range is the output set 1 .
Find the range of these functions .
Range : h( a) 34
n flu )
(a ) flu ) = Nt 5 ,
n > 5
1
•
Given domain is n 715
I • > • 2
jg take
3
a.
•
least value of f- In ) :
> • ↳ Range
3.
• 5 ( or Image ) f- ( n ) =
51-5=10
>
• 6
• 7
Range : flu ) 310
// 0W
Domain Codomain
(b) gln )
} Em < 4
Linking
= U -2
,
Domain =
{ 11213 }
Given domain is -2 c- n< 4 to
codomain = { 1,2 , 3. 4,516,7 }
Range -8 sgln)< 64
appen
:
Range = { 214,6 }
L v
3
C- 2)
3
(4)
A- RIFF AIN FARIHA
, ,
IFFAH ,
ALYAA