100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

6EMA51 - Summary of Lectures

Rating
-
Sold
-
Pages
50
Uploaded on
14-04-2023
Written in
2020/2021

Summary of lectures 6EMA51 - Characterization of Materials

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
April 14, 2023
Number of pages
50
Written in
2020/2021
Type
Summary

Subjects

Content preview

2020




6EMA51 –
Characterization of
Materials
LECTURE SLIDE SUMMARY
DOORSLAER, R.F.J.F. VAN

,6EMA51 – LECTURE 1 - AFM

Crystalline & amorphous → morphology (sub-
nm to macrostructure)

- Synthetic materials: chemistry →
processing → material properties
- Structural variables: only some weight-
averaged structure obtained
o Composition, configuration,
conformation
- Morphological variables:
o number of components
o crystalline / amorphous
regions and transitions
o crystal defects (inclusions,
grain boundaries, etc.)
o phase separation (micro,
meso, macro)
o percolation (electrical, mechanical)
o inhomogeneity, hierarchical assemblies
- Sample preservation is influenced by measurement timescale → data can be different!




AFM

- SPM is microscopy that forms images of surfaces by mechanically moving a physical probe across a
sample and recording the prove-surface interaction as function of position.
o Ideal is that the tip of the probe is terminated in single atom
o Overlap of atomic orbitals of conductive material and probe → a current is found
o Constant current mode
o Constant height mode
- AFM: Cantilever scans surface. Detector records on photodiode by use of laser where the cantilever
tip is positioned. (bending up/down?)
o Cantilever is made by silicon
technology
o Face-distance curve → repulsive
and attractive (Vander Waals)
force of cantilever tip
o Static and dynamic operation
▪ Constant height mode →
non-contact mode
▪ Constant force mode

,DYNAMIC OPERATION AFM: ADDITIONAL (VIBRATING CANTILEVER) OSCILLATION
- Tapping mode principle: driven by actuator to oscillate with amplitude A0 (free vibration) near its
resonant frequency f0. The cantilever is then brought close to the specimen where it taps with a
reduced Asp (set-point amplitude).
- Resolution horizontal and vertical direction
o Horizontal: tip sharpness
o Vertical: how accurately the displacement of the cantilever can be recorded
- Force modulation mode: punches holes in the material (softness / hardness)
o Stiffness measurement → mechanical properties
- Non-contact mode for extremely soft materials
- Tapping mode for soft materials; minimal surface damage
- Contact mode: mechanical properties are probed; both soft and hard materials.
o In dynamic contact mode (force modulation mode) the cantilever tip oscillates around the
set point thus probing the mechanical properties of the sample


ADVANCED AFM
- C-AFM (conductive)
- EFM (electrostatic)
- Both are surface techniques, but these can record 3D images of the material
- Slice-by-slice principle: EFM tip has physical interaction with sample surface. A voltage is applied
between (gold-coated) back plane and the tip. Now the current or V-drop between front and back of
sample can be measured.
o Cut off a thin nm-layer so you can build up 3D representation

, - TERS: Tip Enhanced Raman Spectroscopy
combines confocal microscope with
scanning probe microscope. A gold (highly
conductive) tip is used → electromagnetic
radiation can let Raman focus on very
small volumes. The gold tip largely
enhances Raman resolution.




- SNOM: Scanning Near-Field OM uses a light probe
placed at a distance much smaller than the
wavelength to the sample surface. Image is formed
by scanning the probe over the surface.




SUMMARY SPM

- Surface techniques
- AFM has static and dynamic modes and can be carried out in liquids.
- AFM resolution is dependent on sharpness of tip (horizontal) and reaches sub-0.1 nm level (vertical)
- AFM can probe:
o Surface topography (height image)
o Surface interactions (phase image)
o Mechanical properties (force image)
o Conductive properties (C-AFM)
o Chemical composition (TERS)
o Optical properties (SNOM)
- Imaging of volumes by sequential sectioning and surface imaging.
- Sample preparation relatively simple, e.g. by dispersing / adsorbing materials on support.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
rutgervandoorslaer Technische Universiteit Eindhoven
Follow You need to be logged in order to follow users or courses
Sold
36
Member since
2 year
Number of followers
27
Documents
16
Last sold
1 month ago

3.7

3 reviews

5
0
4
2
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions