100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Fundamenten van de wiskunde - uitwerkingen inleveropgave week 3

Rating
-
Sold
-
Pages
1
Uploaded on
05-04-2023
Written in
2021/2022

Ook als de inleveropgave veranderd is, is dit natuurlijk nog steeds een heel goede oefening om de stof te begrijpen! Ik heb zelf erg genoten van het vak Fundamenten van de Wiskunde.

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
April 5, 2023
Number of pages
1
Written in
2021/2022
Type
Class notes
Professor(s)
?
Contains
3

Subjects

Content preview

Fundamenten uitwerkingen inleveropgave week 3

1 oktober 2021


Gegeven: reëel getal 3 + 1.
√ √
Te bewijzen: 3 + 1 is niet rationaal ( 3 + 1 ∈ / Q) via een bewijs uit het ongerijmde.

Bewijs. Neem √ voor een tegenstelling aan dat 3 + 1 ∈ Q.
Dan geldt dat 3 + 1 = ab voor gehele getallen a en b met b 6= 0.

Hieruit volgt dat 3 = ab − 1 = ab − bb = (a−b) b . Omdat (a − b) en b gehele getallen zijn met
√ (a−b)
b 6= 0, kunnen we concluderen dat 3 = b ∈ Q.
√ √
Merk op dat 3 6= 0 en dat √ 3 rationaal is, hierdoor kunnen we zonder verlies van alge-
meenheid concluderen dat 3 = dc met c en d gehele getallen ongelijk aan 0 waarbij de enige
gemeenschappelijke delers van c en d de getallen 1 en −1 zijn (overige delers kunnen namelijk
worden weggedeeld). √ √
Verder impliceert 3 = dc dat 3 · d = c en kwadrateren geeft dat 3d2 = c2 .
Aangezien d2 een geheel getal is geldt 3 | 3d2 en aangezien 3d2 = c2 geldt 3 | c2 . Aangezien 3
een priemgetal is geldt dat de enige positieve delers van 3 de getallen 1 en 3 zijn.
Hierdoor weten we dat als 3 geen deler is van c dan is deze ook geen deler van c · c = c2 ,
dit is echter niet het geval en daarom geldt 3 | c. We kunnen dus schrijven c = 3k voor een
geheel getal k. Hiermee volgt uit 3d2 = c2 dat 3d2 = (3k)2 = 9k 2 wat impliceert dat d2 = 3k 2 .
Omdat k 2 een geheel getal is weten we dat 3 | d2 en zoals eerder uitgelegd volgt hieruit dat
3 | d. Hiermee hebben c en d de gemeenschappelijke deler 3.
Dit geeft echter een tegenspraak met het feit dat de enige gemeenschappelijke delers van c en
d de getallen 1 en −1 zijn. √
Hieruit kunnen we concluderen dat de aanname 3 + 1 ∈ Q incorrect moet zijn en dus dat

3+1∈ / Q.




1
$4.20
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
marjavdwind Erasmus Universiteit Rotterdam
Follow You need to be logged in order to follow users or courses
Sold
120
Member since
5 year
Number of followers
87
Documents
185
Last sold
3 weeks ago
Boekverslagen Econometrie @EUR

Ik ben Marja en heb econometrie aan de Erasmus Universiteit Rotterdam gestudeerd. Inmiddels ben ik klaar met de opleiding en upload ik vooral nog boekverslagen. Ik zit namelijk al meer dan 6 jaar op een leeskring waar we recente Nederlandstalige literatuur lezen. Ik probeer boekverslagen te maken van boeken die net nieuw zijn en dus nog weinig verslagen hebben.

4.1

14 reviews

5
9
4
1
3
2
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions