19 september 2021
Opgave 2.2.3
(1):
Gegeven: n is een geheel getal en n is even.
Te bewijzen: 3n is even.
Bewijs. Laat n een geheel getal zijn en laat n even zijn. Aangezien n even is dan is n van
de vorm n = 2k met k een geheel getal. Dan geldt 3n = 3(2k) = 2(3k) en dus is 3n ook een
geheel veelvoud van 2 en daarmee even.
(2):
Gegeven: n is een geheel getal en n is oneven.
Te bewijzen: 3n is oneven.
Bewijs. Laat n een geheel getal zijn en laat n oneven zijn. Als n oneven is dan is n van de
vorm n = 2k + 1 met k een geheel getal. Dan geldt 3n = 3(2k + 1) = 6k + 3 = 2(3k + 1) + 1
en dus is 3n een even getal plus 1 en dus oneven.
Opgave 2.2.7
Gegeven: getallen a, b, c en d zijn geheel met a|b en c|d.
Te bewijzen: ac|bd.
Bewijs. Laat a, b, c en d gehele getallen zijn met a|b en c|d. Dan geldt ax = b en cy = d voor
gehele getallen x en y. Daarmee geldt (ac) · (xy) = ax · cy = bd en aangezien (xy) geheel is
geldt ac|bd.
1
, Opgave 2.3.4
Gegeven: rationaal getal q ongelijk aan 0, en x een irrationaal getal.
Te bewijzen: het product van q en x is irrationaal.
Bewijs. Laat q een rationaal getal zijn en x een irrationaal getal zijn.
We zullen een bewijs uit het ongerijmde leveren.
Aangezien q een rationaal getal is, geldt q = ab voor gehele getallen a en b met b 6= 0. Ook
geldt a 6= 0 aangezien q ongelijk aan 0 is.
Neem voor een tegenstelling aan dat qx rationaal is en dus qx = dc voor gehele getallen
c en d met d 6= 0.
Dan geldt qx = ab · x = dc dus x = adbc
waarbij a, b, c en d gehele getallen zijn en dus zijn bc en
ad ook geheel, verder geldt a, d 6= 0 en dus ad 6= 0, hiermee kunnen we concluderen dat x een
rationaal getal is.
Dit is in tegenspraak met het feit dat x irrationaal is. Hiermee moet de aanname dat qx
rationaal is, incorrect zijn. We kunnen concluderen dat qx irrationaal is.
Opgave 2.3.6
Gegeven: c is een geheel getal met c ≥ 2, en c is geen priemgetal.
√
Te bewijzen: er bestaat een geheel getal b zodat b ≥ 2, zodat b|c en zodat b ≤ c.
Bewijs. Laat c een geheel getal zijn zodanig dat c ≥ 2, en c geen priemgetal is.
Aangezien c geen priemgetal is heeft c een positieve deler x ongelijk aan 1 en ongelijk aan c.
Dan nemen we het gehele positieve getal y = xc zodat x · y = c en dus ook y|c.
Aangezien x 6= 1 en x 6= c geldt ook dat y 6= 1 en y 6= c. Dan moet gelden x ≥ 2 en y ≥ 2.
√ √ √ √ √
Ofwel x ≤ c, ofwel y ≤ c, want als x, y > c dan geldt dat c = xy > c · c = c wat
√
een tegenspraak is. De waarde van x, y die kleiner of gelijk is aan c voldoet dus aan de
voorwaarden van b.
2