100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Business Analytics - lecture notes

Rating
4.5
(2)
Sold
4
Pages
36
Uploaded on
28-03-2023
Written in
2022/2023

The document contains a summary of the lecture notes for the course Business Analytics from the minor Business Administration.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 28, 2023
Number of pages
36
Written in
2022/2023
Type
Class notes
Professor(s)
-
Contains
All classes

Subjects

Content preview

Business analytics lectures Y3, S1

Lecture 1
Developments and trends (H1)
Three developments spurred recent explosive growth in the use of analytical methods in
business applications:
- Technological advances (easier to produce incredible amounts of data)
- Methodological developments (easier to explore and visualize data; faster algorithms for
optimization and simulation)
- More computing power and storage capability


Definition (Ch. 1)
 Business Analytics
- “Scientific process of transforming data into insight for making better decisions”
- Objective: “Used for data-driven or fact-based decision making, which is often seen
as more objective than other alternatives for decision making”

Examples
• Amazon.com possesses huge databases with purchases, preferences, and
recommendations (hundreds of millions of records)
- It also contains information about potential buyers
- Hence, it proposes recommendations based on similarities between historical and
“new” information
• Entrepreneurs who apply for a bank loan
- Information and characteristics known of previous potential borrowers and whether
these persons were creditworthy
- E.g., the probability of re-paying a bank loan can then also be determined for those
who apply for a bank loan


Descriptive (Ch. 1)
• Descriptive analytics (beschrijvend)
- Encompasses the set of techniques that describes what has happened in the past


Predictive (Ch. 1)
• Predictive analytics (voorspellend)
- Consists of techniques that use models constructed from past data to predict the
future or ascertain the impact of one phenomenon on another


Prescriptive (Ch. 1)
• Prescriptive analytics (voorschrijvend)
- Indicates a best course of action to take
- For example, optimization models: Models that give the best decision subject to
constraints of the situation

,Descriptive (Ch. 1)
• Descriptive analytics
- Encompasses the set of techniques that describes what has happened in the past
- For example, a report summarising relevant information from a large database
- Visualisation techniques (e.g., bar chart)
- Dashboards (e.g., Health app of Apple)


Predictive (Ch. 1)
• Predictive analytics
- Consists of techniques that use models constructed from past data to predict the
future or ascertain the impact of one phenomenon on another
- Use of historical sales data to predict future sales
- Use of purchasing behaviour of consumers to predict market shares
- What are the risk factors of cardiovascular diseases?
- Which characteristics determine whether a soccer team is able to win a match?
- Which factors increase the probability of extending a magazine subscription?


Prescriptive (Ch. 1)
• Prescriptive analytics
- Indicates a best course of action to take
- For example optimization models: Models that give the best decision subject to
constraints of the situation
- What is the best pricing strategy?
- Leverage historical data to determine the timing and level of discounts that maximize
a company’s revenues
- At which location should a factory be opened to meet customer requirements at
minimum costs?
- What financial investments need to be made to achieve superior returns with as little
risk as possible?
- Predictive and prescriptive more advanced than descriptive



Big data (Ch. 1)
• Any set of data that is too large or too complex to be handled by standard data-
processing techniques and typical desktop software
• The 4 V’s
- Volume – volume and file size (data at rest)
- Velocity – speed at which data become available and are analysed (data in motion)
- Variety – various types/forms of data such as text data, audio data, video data, GPS
data, social media data, both structured and unstructured (data in many forms)
- Veracity – uncertainty in the data, e.g. with regard to missing data, inconsistency and
reliability of the data (data in doubt)

- Are there other dimensions that play a role? => VALUE – it should be usefull

,Sub-domains of Business Analytics
• Finance
- Prediction of performance
- Determining optimal stock portfolio
• Human resource (HR) analytics
- How do we improve well-being among employees?
- How do we optimize the work schedules?
• Health care analytics
- How do we speed up the diagnosis process?
• Sports analytics
- How do we optimize the performance of the team?
- Which players in a team are lined up, and at what positions?
- How much is a player worth? How much do we offer them in contract negotiations?
- How do we optimize the design of the car to keep a lasting advantage over the
competition?
- Dynamically adjusting ticket prices throughout the season
• Web analytics
- Analysis of numbers of visitors of websites and social media
- When and where do we place ads?
- How can we best use social networks to promote our products?



How do datasets look like? (Ch. 2)
• Data
- The facts and figures (=information) collected, analysed, and summarized for
presentation and interpretation
• Variable
- A characteristic or a quantity of interest that can take on different values
- Hence the name “variable”; it is about the variation in the data
• Observation
- A set of values corresponding to a set of variables
- So, for each person, firm, country, region, …
• Variation
- The difference in a variable measured over observations



Example dataset (Facebook)

, Data (Ch. 2)
• Often one has a sample rather than the entire population
• Population
- All elements of interest
• Sample
- Subset of the population
- Random sampling: Goal is to gather a representative sample of the population data
• Quantitative / continuous data
- Continuous variables are variables that could take any value (perhaps within some
range)
- Data on which numeric and arithmetic operations, such as addition, subtraction,
multiplication, and division, can be performed
• Categorical data
- Variables recording which category an observation is in
- Data on which arithmetic operations cannot be performed (such as Yes / No
variables)


Where do the data come from?
• Experimental studies
- Individuals randomly assigned to treatment group and control group
- Treatment group is assigned a treatment (controlled environment)
- In this way one gains insight into the causal effect of one variable on another
- Relevant data are collected before and after the study
- The differences before and after are compared between the treatment group and
control group

- For example, the effectiveness of a drug
- Or what the effect of entrepreneurship education is
- “Observational studies”, such as a survey
- Day reconstruction method



Summarising datasets (Ch. 2)
• Important!
• First step in any analysis!
• Descriptive analytics: structure large collections of data into indicators (kengetallen)


Distributions (you summarise datasets through this)
- A description of how often different values occur
- Categorical variables: frequency distribution
- Quantitative variables: histogram (intervals and frequencies)


 Summarise the variables
$8.38
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Reviews from verified buyers

Showing all 2 reviews
1 year ago

1 year ago

4.5

2 reviews

5
1
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Sasch Universiteit Leiden
Follow You need to be logged in order to follow users or courses
Sold
38
Member since
4 year
Number of followers
26
Documents
8
Last sold
1 month ago

4.6

10 reviews

5
7
4
2
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions