100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Complete Summary Machine Learning (X_400154)

Rating
-
Sold
17
Pages
104
Uploaded on
26-03-2023
Written in
2022/2023

This summary contains all material discussed in the lectures (1-13) of Machine Learning taught at the Vrije Universiteit Amsterdam to third year Business Analytics, Information Science, Computer Science and Artificial Intelligence bachelor students. It is quite extensive, contains a lot more than just theoretical formulas (I think it is hard to memorise them without knowing some background) so everything I wrote is explained with a sketch, example or some extra information that all helped me to understand all theory, rather than memorising some formulas. I passed the exam with 39/40 points so it definitely helped me to apply all knowledge, I hope it does the same for you!

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 26, 2023
Number of pages
104
Written in
2022/2023
Type
Summary

Subjects

Content preview

LECTURE 71 WHAT IS MACHINELEARNING


We provide a large number of examples from the sort of thing we
want the computer to learn Instead of providing the computer a set
of instructions step bystep the computer figurs out its own program



examples sortinghandwritten adresses computer chess self driving cars


A ML problem is suitable when
we can't solve it explicitly

approximate solutions are fine
limited reliability predictability interpretability is fine

plenty ofexamples to learnfrom


ML provides systems the ability to automatically learn and improve
from experience without beingexplicitlyprogrammed

Most of this Ml course is about offline learning The main idea is
that we seperate learningpredicting and acting
We start with a dataset of examples instances Then feed these
instances into a learningalgorithm that produces a model
Test the model to see if it works by checking its predictions


We want Solutions that are applicable across domains not one
solution for chess one for cars etc Hence we abstract the
learning task to an abstract task e g Classification regression
and then develop an algorithm for these abstract tasks

,Two types of abstract tasks
Supervised abstract tasks
provide examples of input and output
learn to predict the output from an unseen input
Classification
regression


unsupervised abstract tasks
provide input only
find any pattern that explains something about the data

clustering
density estimation
generative modeling

Basic recipe for offline ML
1 Abstract the problem to a Standard task
2 Choose instances and their features
3 Choose model class
4 Search for a good model

,LECTURE 12 CLASSIFICATION


Classification is the task of assigning a class to an example
That is one of a finite number of categories


The basic framework of classification has data that
consists of examples instances of things we are trying to
learn something about Per instance we measure some
feature numeric categorie Finally we have the target value
the thing we are
trying to learn In classification this is

always a Class of possible values

3 examples of classification algorithms
linear classifier
With 2 features above the line is
ei predicted and below the line



Decision tree classifier

42 yo Per target value 2 classes are possible
la Gb If the first eg is yes and the
Yesh yo gesp y no
a b a b second not the class b is assigned


K nearest neighbours KNN
The algorithm searches for the k in the example

_jij KU nearest neighbours and assign the class
that is most frequent in that set

, LECTURE 1.3 OTHER ABSTRACT TASKS REGRESSION
CLUSTERING DENSITY ESTIMATION


Regression supervised
Works exactly the same as Classification except we're
predicting a number instead of a Class
The features of a particular instance i are denoted by the
vector xi The corresponding true label given the data is ti
The models prediction is given by f xi
Goal is to get f xi as close as possible to ti
To determine how good a model is
we use a lossfunction
ii Igression Mean squared error Insel loss
loss If IF

We can also use the decision tree principle to perform
a regression tree Just like classification
regression giving us
we can even apply KNN to regression as well


Clustering unsupervised
Goal here is to split the instances into a number of
clusters This number is usually given by the user in advance
One example of clustering is k means start
bij choosing
k random points in the feature space the means Assign
each point to the closest mean giving k clusters Next re compute
the means for each cluster and re assign Points to its closest
mean Repeat this process until the means stop moving

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
jorinemol Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
131
Member since
7 year
Number of followers
76
Documents
15
Last sold
6 months ago

4.3

16 reviews

5
10
4
4
3
0
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions