100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Uitgebreide samenvatting toetsende statistiek

Rating
-
Sold
24
Pages
59
Uploaded on
23-03-2023
Written in
2022/2023

Een uitgebreide samenvatting voor het vak toetsende statistiek van de UVA. De samenvatting bevat: - Agresti, A. & Franklin, C. (2014/2016). Statistics: The art and science of learning from data. Boston, MA: Pearson Education. (H 10 t/m 15) - Van Peet, A. A. J., Van den Wittenboer, G. L. H., & Hox, J. J. (2004), Effectgrootte en het onderscheidingsvermogen van een toets. In A. A. J van Peet, G. L. H. van den Wittenboer, & J. J. Hox, Toegepaste statistiek: beschrijvende technieken. Groningen: Wolters Noordhof. - Agresti, A. & Finlay, B. (2009). Logistic regression: Modeling categorical responses (par. 15.1 t/m 15.3). In A. Agresti, & B. Finlay, Statistics: Statistical Methods for the Social Sciences. Boston, MA: Pearson Education. - Aantekeningen vanuit de les

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 10 t/m 15
Uploaded on
March 23, 2023
File latest updated on
February 16, 2024
Number of pages
59
Written in
2022/2023
Type
Summary

Subjects

Content preview

1: Toetsen, power en effectgrootte (herhaling beschrijvende
statistiek)
Nulhypothese
p-waarde Beschrijft hoe zeldzaam de geobserveerde steekproefproportie (of extremer) zou zijn als H 0 waar is

Samenvatting van data:
1. Parameter
 Numerieke samenvatting van de populatie
 Vaak onbekend
 Meet je eigenlijk nooit, gebruik je statistic voor
 PP- parameter, populatie
 Gemiddelde ( μ) en standaard deviatie (σ )
2. Statistic (steekproefwaarde)
 Numerieke samenvatting van een steekproef uit de populatie
 SS-Statistic, steekproef
 Gemiddelde ( x ) en standaard deviatie ( s)
 Hoe groter de steekproef, hoe beter de voorspelling
 Grote variatie in populatie zorgt voor minder precieze voorspelling
--> Samenvattende waarde, zoals gemiddelde, modus of mediaan

,Hypothesetoetsing 1 categorische Voorbeeld Hypothesetoetsing 1 Voorbeeld
variabele kwantitatieve variabele

z-toets voor 1 proportie t-toets voor 1 gemiddelde
Een random steekproef van 51
Er wordt experiment uitgevoerd studenten fietst gemiddelde 21,25
waarin gekeken wordt of 86 km/week, met een SD van 5.12.
kinderen (willekeurig getrokken) wel Wijkt het gemiddeld aantal
of niet pointing gesture laten zien. kilometers dat studenten per week
Laat meer dan de helft van de fietsen af van het landelijk
kinderen dit zien? gemiddelde van 19.25km/week?
(Significantieniveau van 0.05) (Significantieniveau van 0.05)

Assumpties checken 86 * 0,5=43 & Assumpties checken Tweezijdig dus
 De variabele is categorisch 86*(1-0,50)=43.  De variabele is kwantitatief steekproef is
(bijv. wel of niet) Dus steekproef is  De steekproef is groot genoeg
 De steekproef is willekeurig groot genoeg willekeurig getrokken
getrokken  De populatieverdeling is
 De steekproef is groot normaal
genoeg dat de  Vooral belangrijk bij kleine
steekproevenverdeling van steekproef en eenzijdig
de steekproefproportie toetsen
(onder Ho) normaal benaderd  N>30, dan robuust
kan worden  Tweezijdig, dan robuust
np ≥ 15 en n ( 1− p0 ) ≥ 15
 Bij 2-zijdig toetsen is
robuust, dus maakt de
formule niet uit

Hypothesen opstellen H 0 : p=0,50 Hypothesen opstellen H 0 : μ=19.25 . H A :μ ≠ 19
H A : p>0,50
Nulhypothese (H0) Nulhypothese (H0)
1. H 0 : p= p0 1. H 0 : μ=μ0

Alternatieve hypothese (HA of H1) Alternatieve hypothese (HA of H1)
2. Geeft range van alternatieve 2. Geeft range van
waarden voor parameter aan alternatieve waarden voor
(proportie of gemiddelde) (<, parameter aan (proportie
>, ≠) of gemiddelde) (<, >, ≠ )
3. Eenzijdig: H A : p> p0 of 3. Eenzijdig: H A : μ> μ0 of
H A : p< p0 H A : μ< μ0
4. Tweezijdig: H A : p ≠ p 0 4. Tweezijdig: H A : μ ≠ μ 0
Toetsingsgrootheid (tg) (Test Steekproefproporti Toetsingsgrootheid (tg) (Test x−μ0 21,25−19.25
Statisic) berekenen e ( ^p) is Statisic) berekenen t= =
s 5.12
 Hoe groter z-score, hoe bijvoorbeeld 48 van  Hoe groter t-score, hoe
verder er vanaf dat H0 de 86 kinderen: verder er vanaf dat H0
√n √51
waar is 48/86=0,5581. waar is
 Als H0 waar is, dan is z- P0 staat in x−μ0
 t=
score 0 hypothese se x
^p− p0 ^p− p 0 0,5581−0,5 s
 z= z= =  se=1,08
x=


√ √
se 0 p0 (1−p 0) 0,5(1−0,5) √n
 se0 =
√ p0 (1−p 0)
n
n 86

,P-waarde opzoeken In tabel bij 1,08 P-waarde opzoeken Df=N-1=50.
 Beschrijft hoe zeldzaam de p=0,8599.  Beschrijft hoe zeldzaam de
geobserveerde geobserveerde In tabel tussen
steekproefproportie (of Geïnteresseerd in steekproefproportie (of P=0.005 en
extremer) zou zijn als H0 'groter dan', dus extremer) zou zijn als H0 P=0,001
waar is rechterkant, dus 1- waar is Tweezijdig, dus
 Hoe kleiner P-waarde, hoe 0,8599=0,1401  Hoe kleiner P-waarde, hoe tussen
sterker bewijs tegen sterker bewijs tegen 2*0,005=0,01
nulhypothese nulhypothese en
 Passend bij z-waarde in  Passend bij t-waarde in 2*0,001=0,002
tabel tabel
 Bij hypothese '<' in tabel  Bij hypothese '<' in
geïnteresseerd in tabel geïnteresseerd
linkerkant in linkerkant
 Bij hypothese '>' in tabel  Bij hypothese '>' in
geïnteresseerd in tabel geïnteresseerd
rechterkant, dus 1-p in rechterkant, dus 1-
 Bij hypothese '≠ ' in p
tabel geïntresseerd in  Bij hypothese '≠ ' in
beide kanten dus 2p (p- tabel geïntresseerd in
waarde verdubbelen) beide kanten dus 2p
(p-waarde
verdubbelen)
 Df=N-1

Conclusies trekken 0,1401 is groter Conclusies trekken Kleiner dan
 Rapporteer en dan  Rapporteer en 0,05, dus
interpreteer significantieniveau interpreteer nulhypothese
Interpreteren 0,05, dus niet Interpreteren verwerpen en
 Beslisregels verwerpen is verwerpen.  Beslisregels verwerpen dat gemiddelde
a. p-waarde is kleiner is steekproef
dan vooraf gekozen Niet genoeg bewijs a. p-waarde is kleiner significant
significantieniveau ( om nulhypothese te dan vooraf gekozen hoger ligt dan
α ) (meestal 0.05/5%) verwerpen. 0.1401 significantieniveau ( landelijk
b. Toetsingsgrootheid is niet significant α ) (meestal 0.05/5%) gemiddelde
(tg) extremer is dan groter dan 0,50 b. Toetsingsgrootheid
grenswaarde/kritieke (tg) extremer is dan
waarde grenswaarde/kritieke
 Anders verwerp je de waarde
nulhypothese niet (niet  Anders verwerp je de
accepteren!) nulhypothese niet (niet
 Bij verwerpen: accepteren!)
Gevonden resultaat  Bij verwerpen: Gevonden
verschilt statisch resultaat verschilt statisch
significant van de significant van de waarde
waarde van de van de nulhypothese
nulhypothese



Power
Power Kans op correct weerleggen van nulhypothese



Stappenplan Power uitrekenen (bij proportie) Voorbeeld P> Voorbeeld P<
H0: p=0,333, Ha: p=>0,333, H0: p=0,6 Ha: p=<0,6

, α =0 , 05 ,N = 116 p=0.5 α =0 , 05 ,N = 200 p=0.45
β Power β Power




1) Bepaal kritieke z-waarde die hoort bij Z-score bij P:α (1−0 ,05)= 1.645. Z-score bij P α (0 , 05)= -
significantieniveau (α ) (H0) H0 wordt verworpen als z=1.645 of 1.645. H0 wordt verworpen
 p> rechteroverschrijdingskans van hoger. als z=-1.645 of lager.
alfa (1- α )
 p< linker overschrijdingskans van ^p moet minimaal 1.645 se0 boven ^p moet minimaal -1.645 se0
alfa P0 liggen onder P0 liggen
 ^p moet minimaal z-score se0
boven/onder P0 liggen


√ √
2) Standaardfout berekenen (H0) 0,33 ( 1−0,33 ) 0,6(1−0,6)


SE= =0.0437 SE= =0.0346

p 0 (1− p0 ) 116 200
SE=
n
3) Welke steekproefproportie ( ^p ¿hoort bij de ^p=¿0,33 (P0) + 1.645 (z-score) * ^p=¿0,6 (P0) - 1.645 (z-
kritieke z-waarde? Wanneer wordt ^p dus 0.0437 (SE) = 0.4019 score) * 0.0346 (SE) =
verworpen (H0) 0.5431
 ^p= p 0+ z −score∗SE ^p moet minimaal 0.4019 zijn om
H0 te verwerpen ^p moet maximaal 0,5431
zijn om H0 te verwerpen


√ √
4) Hoeveel standaardfouten ^p af van de 0.5 ( 1−0.5 ) 0.45 ( 1−0.45 )
werkelijke p? p wordt gegeven. (HA) SE= =0.0464 SE= =0.0352
116 200
 Hoe groter p afligt van p0, hoe
groter de power
 SE=
√ p (1− p)
n
5) Welke z-waarde hoort bij hoort bij de 0.4019−0.50 z-waarde=
z-waarde= =−2.11
steekproefproportie (HA) 0.0464 0.5431−0.45
=2.64
^p− p (linkeroverschrijdingskans) 0.0352
 z=
se (linkeroverschrijdingskans)
 P>P0= linkeroverschrijdingskans Dus
 P<P0= rechteroverschrijdingskans rechteroverschrijdingskans
= -2.64

6) Kans op type 2 fout ( β ): (HA) Kans op type 2 fout: Kans op type 2 fout:
 P-waarde opzoeken bij z-score P-waarde bij -2.11 = 0.0174 P-waarde bij -2.64 = 0.0041

7) Power= 1-Type 2 fout ( β ) (HA) 1-0,0174=0,9826. Dus 98% kans 1-0,0041=0,9959. Dus 100%
 Kans om een effect te vinden in de om effect te vinden in de toets kans om effect te vinden in
toets de toets
 Al tevreden bij 0.80


Effectgrootte en onderscheidingsvermogen
Onderscheidingsvermogen Kans dat de nulhypothese terecht wordt verworpen

Hypothesen:

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
michelle0 Universiteit van Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
873
Member since
10 year
Number of followers
444
Documents
63
Last sold
1 week ago

Ik zit in het eerste jaar van de premaster Onderwijswetenschappen aan de UVA. Ik volg ook veel vakken van het bachelor programma.

3.9

105 reviews

5
29
4
43
3
27
2
2
1
4

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions