theonlinephysicstutor.com
Mark schemes
A
1 [1]
C
2 [1]
A
3 [1]
B
4 [1]
sinθ = nλ/d in this form/correct calculations of d/d = 1/300
5
C1
substitutes correctly – condone powers of 10
C1
18.9
C1
2 or 3 sf only
A1
[4]
(a) 1.06 × 10-6 m
6
B1
1
@TOPhysicsTutor facebook.com/TheOnlinePhysicsTutor
Page 23 of 38
, theonlinephysicstutor.com
(b) use of nλ = dsinθ with n = 2 and d = ans to (a)
C1
λ = 1.06 × 10-6 × sin 55º/2
C1
4.34 × 10-7 m
A1
3
[4]
(a) (i) = 590 × 10–9m (1)
7
(using d sin θ = nλ gives)
(1) = 0.707 or
7.07 × 108 if nm used (1)
θ = 45.0° (1) (accept 45°)
(ii) (sin θ ≤ 1) gives ≤ 1 or n ≤ or = (1) = 2.83 (1)
so 3rd order or higher order is not possible (1)
alternative solution:
(substituting) n = 3 (into d sin θ = nλ gives) (1)
sin θ ( ) = 1.06 (1)
gives ‘error’/which is not possible (1)
7
(b) (using d sin θ = nλ gives)
2 λ = 1.67 × 10–6 × sin 42.1 (1)
λ(= 0.5 × 1.67 × 10–6 × sin 42.1) = 5.6(0) × 10–7 m (or 560 nm) (1)
2
[9]
@TOPhysicsTutor facebook.com/TheOnlinePhysicsTutor
Page 24 of 38
, theonlinephysicstutor.com
(i) use of (26 ± 2) mm for 2θ or (13 ± 1) mm for θ
8
M1
range 2.60 → 3.02
A1
(ii) nλ= d sin θ seen
M1
substitution with correct powers
1.20 × 10−5 → 1.40 × 10−5
A1
1/d or number of lines m−1 calculated
71400 → 833300 needs unit
B1
conversion to number of lines mm−1
71(.4) → 83(.3) needs unit
B1
[6]
(a) d sin θ = n λ or d sin 12 = 6.3 x 10–7
9
C1
3.0 x 10–6 m
A1
2
@TOPhysicsTutor facebook.com/TheOnlinePhysicsTutor
Page 25 of 38
Mark schemes
A
1 [1]
C
2 [1]
A
3 [1]
B
4 [1]
sinθ = nλ/d in this form/correct calculations of d/d = 1/300
5
C1
substitutes correctly – condone powers of 10
C1
18.9
C1
2 or 3 sf only
A1
[4]
(a) 1.06 × 10-6 m
6
B1
1
@TOPhysicsTutor facebook.com/TheOnlinePhysicsTutor
Page 23 of 38
, theonlinephysicstutor.com
(b) use of nλ = dsinθ with n = 2 and d = ans to (a)
C1
λ = 1.06 × 10-6 × sin 55º/2
C1
4.34 × 10-7 m
A1
3
[4]
(a) (i) = 590 × 10–9m (1)
7
(using d sin θ = nλ gives)
(1) = 0.707 or
7.07 × 108 if nm used (1)
θ = 45.0° (1) (accept 45°)
(ii) (sin θ ≤ 1) gives ≤ 1 or n ≤ or = (1) = 2.83 (1)
so 3rd order or higher order is not possible (1)
alternative solution:
(substituting) n = 3 (into d sin θ = nλ gives) (1)
sin θ ( ) = 1.06 (1)
gives ‘error’/which is not possible (1)
7
(b) (using d sin θ = nλ gives)
2 λ = 1.67 × 10–6 × sin 42.1 (1)
λ(= 0.5 × 1.67 × 10–6 × sin 42.1) = 5.6(0) × 10–7 m (or 560 nm) (1)
2
[9]
@TOPhysicsTutor facebook.com/TheOnlinePhysicsTutor
Page 24 of 38
, theonlinephysicstutor.com
(i) use of (26 ± 2) mm for 2θ or (13 ± 1) mm for θ
8
M1
range 2.60 → 3.02
A1
(ii) nλ= d sin θ seen
M1
substitution with correct powers
1.20 × 10−5 → 1.40 × 10−5
A1
1/d or number of lines m−1 calculated
71400 → 833300 needs unit
B1
conversion to number of lines mm−1
71(.4) → 83(.3) needs unit
B1
[6]
(a) d sin θ = n λ or d sin 12 = 6.3 x 10–7
9
C1
3.0 x 10–6 m
A1
2
@TOPhysicsTutor facebook.com/TheOnlinePhysicsTutor
Page 25 of 38