100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Programme python pour déterminé une concentration inconnue par dosage spectrophotométrique, plus simulation Monte-Carlo

Rating
-
Sold
-
Pages
4
Uploaded on
12-03-2023
Written in
2022/2023

Le programme définit les valeurs d'absorbance et de concentration, ainsi que les incertitudes associées, pour créer un modèle de régression linéaire en utilisant la fonction "polyfit" de NumPy. Il affiche ensuite les paramètres de la droite de régression linéaire, notamment la pente, l'ordonnée à l'origine et le coefficient de corrélation. Le programme calcule également la concentration inconnue en utilisant la fonction "C_inconnue" et affiche sa valeur. Il utilise ensuite la méthode de simulation Monte-Carlo pour générer des valeurs d'absorbance simulées et trace un histogramme des résultats obtenus. Finalement, le programme crée une figure avec deux graphiques. Le premier graphique affiche les données d'absorbance et de concentration, la droite de régression linéaire ainsi que la concentration inconnue. Le deuxième graphique affiche l'histogramme des valeurs d'absorbance simulées.

Show more Read less
Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 12, 2023
Number of pages
4
Written in
2022/2023
Type
Other
Person
Unknown

Subjects

Content preview

#Calcule de C inconnue :
import numpy as np
import numpy.random as rd
import matplotlib as plt
import matplotlib.pyplot as plt
data=np.loadtxt('C:/Users/basti/Documents/PCSI2/TIPE/Classeur1.txt') #prend les
valeur dans le document joint en txt

C=[1,2,3,4,5] #Abscisse:concentration
absorbance=[0.1925,0.3883,0.5846,0.7948,0.9761] #Absorbance:ordonnée
Ab_c_inconnue=0.5705 #Absorbance de la concentration inconnue
uC=np.array([0.1,0.1,0.1,0.1,0.1]) #incertitude de la concentration
uab=np.array([0.02,0.02,0.02,0.02,0.02]) #incertitude de l'absorbance

p=np.polyfit(C,absorbance,1)
plt.errorbar(C,absorbance,xerr=5*uC,yerr=5*uab,fmt='o')
C_modele=np.linspace(0,13,1000) #remplire avec la valeur maximal de la
concentration au milieu
absorbance_modele=p[0]*C_modele+p[1]
r=np.corrcoef(C,absorbance)

k=p[0]
def C_inconnue(ab_c_inconnue):
return Ab_c_inconnue/k #détermination de la concentration inconnue

print("pente k = ",p[0]," / ordonnée à l'origine = ",p[1]," / coefficient de
corélation r =",r[0,1]," / concentration iconnue = ",C_inconnue)

plt.plot(C,absorbance,'+')
plt.plot(C_modele,absorbance_modele, color='red')
plt.xlabel('Concentration en mol/L')
plt.ylabel('Absorbance')
plt.title('Absorbance en fonction de la concentration')
plt.text(7.5,3,"• Droite d'équation A=k*C+b : ")
plt.text(7.75,2.5,"k = " + "{:.4}".format(p[0]) + " L/mol")
plt.text(7.75,2,"b = " + "{:.4}".format(p[1]))
plt.text(7.75,1.5,"r = " + "{:.4}".format(r[0,1]))
plt.text(7.5,1,"• Concentration inconnue : ")
plt.text(7.75,0.5,"C_inconnue = " + "{:.4}".format(C_inconnue(Ab_c_inconnue)) +
"mol/L")
plt.show()

#__________________________________________________________________________________
_______________________________________________________________
#simulation Monte-Carlo pour l'absorbance:

import numpy as np
import matplotlib.pyplot as plt

# Concentration et incertitude associée
c=0.001
u_c=0.0001
k=0.1974
# Nombre de simulations Monte-Carlo
n_simulations=3000

# Simulations Monte-Carlo de l'absorbance
absorbances=[]
for i in range(n_simulations):
$10.27
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
bastienmathieu60

Get to know the seller

Seller avatar
bastienmathieu60 Lycée Blaise-Pascal (Clermont-Ferrand)
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
2
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions