100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Mathématiques - Primitives et intégrales

Rating
-
Sold
-
Pages
23
Uploaded on
01-03-2023
Written in
2020/2021

Ce document est un manuel de mathématiques portant sur le thème du calcul intégral. Il est organisé en trois unités. La première unité est consacrée aux primitives d'une fonction. Elle commence par une définition et des exemples, suivis de propriétés. Elle aborde également les primitives prenant une valeur donnée en un point donné et les primitives des fonctions usuelles. Les opérations sur les primitives sont également étudiées, y compris les règles d'intégration et des exemples. L'unité 2 est centrée sur le calcul intégral. Elle commence par une définition de l'intégrale et des exemples, suivis des propriétés de l'intégrale, y compris la relation de Chasles, l'intégrale et la parité, la linéarité de l'intégrale, l'inversion des bornes, le signe d'une intégrale et la valeur moyenne d'une fonction sur un intervalle borné. Elle étudie également le lien entre primitive et intégrale, ainsi que l'application du calcul intégral au calcul d'aire. L'unité 3 est dédiée à l'intégration par parties (IPP). Elle explique le principe de l'IPP, fournit un exemple de calcul de primitive, et aborde l'itération du procédé. En résumé, ce manuel est un guide complet pour les étudiants de mathématiques qui souhaitent approfondir leur compréhension de la théorie et des applications du calcul intégral. Il contient de nombreux exemples et exercices pour aider les étudiants à développer leurs compétences en la matière.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 1, 2023
Number of pages
23
Written in
2020/2021
Type
Other
Person
Unknown

Subjects

Content preview

L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 6:
Primitives et intégrales

Table des matières

Unité 1 - Primitive d’une fonction ............................................................................................ 2
I - Généralités .................................................................................................................................... 2
1 ) Définition et exemples .................................................................................................. 2
2 ) Propriétés ...................................................................................................................... 3
II - Primitive prenant une valeur donnée en un point donné ........................................................ 4
III - Primitives des fonctions usuelles .............................................................................................. 5
IV - Opérations sur les primitives ................................................................................................... 6
1 ) Règles d’intégration ...................................................................................................... 6
2 ) Exemples ....................................................................................................................... 7
Unité 2 - Calcul intégral .......................................................................................................... 11
I - Définition .................................................................................................................................... 11
1 ) Définition d’une intégrale ........................................................................................... 11
2 ) Exemples ..................................................................................................................... 11
II - Propriétés de l’intégrale ........................................................................................................... 13
1 ) Relation de Chasles ..................................................................................................... 13
2 ) Intégrale et parité ........................................................................................................ 13
3 ) Linéarité de l’intégrale ................................................................................................ 15
4 ) Inversion des bornes ................................................................................................... 15
5 ) Signe d’une intégrale .................................................................................................. 16
6 ) Valeur moyenne d’une fonction sur un intervalle borné............................................. 16
III - Lien entre primitive et intégrale ............................................................................................ 17
IV - Application du calcul intégral au calcul d’aire ..................................................................... 17
1 ) Cas où f ( x ) est positive sur l’intervalle  a ; b ......................................................... 18
2 ) Cas où f ( x ) est négative sur l’intervalle  a ; b ........................................................ 18
3 ) Cas où f ( x ) n’est pas de signe constant sur l’intervalle  a ; b ............................... 18
4 ) Aire comprise entre deux courbes............................................................................... 19
Unité 3 - Intégration par parties (IPP) ................................................................................... 21
I - Principe ....................................................................................................................................... 21
II - Exemple de calcul de primitive ................................................................................................ 22
III - Itération du procédé ............................................................................................................... 22




1

,L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Unité 1 - Primitive d’une fonction

Cette unité introduit la notion de primitive d’une fonction continue pour ensuite appréhender le calcul intégral.

La recherche de primitive est en lien étroit avec la dérivation des fonctions dont elle est en quelques sortes
l’opération inverse.

Ainsi, déterminer une primitive, c'est un peu comme chercher l'origine d'une dérivée.



I - Généralités

1 ) Définition et exemples

Définition :

Soit f une fonction définie sur un intervalle I .
Une fonction F est une primitive de f sur I , si et seulement si, elle est dérivable sur I et pour tout x de
I :
F '( x) = f ( x)


Exemples :

Pour illustrer cette définition intéressons-nous à quelques exemples :


• Une primitive de la fonction f ( x) = 2 x + 1 est la fonction F ( x) = x 2 + x .

En effet, si on dérive la fonction F ( x ) , on obtient pour tout réel x :

F '( x) = ( x 2 + x ) = 2 x + 1

Ainsi, on retrouve bien la fonction f ( x ) .
La fonction, F1 ( x ) = x + x + 2 constitue également une autre primitive de la fonction f ( x ) (la
2


dérivée de F1 ( x ) étant égale à f ( x ) ).




2

, L1-SDG-Mathématiques 1 P. Loup - L. Bonifas



• Une primitive de la fonction g ( x) = 10 x + 3 est la fonction G( x) = 5 x 2 + 3x .

En effet, pour tout réel x : G '( x) = ( 5x 2 ) '+ ( 3x ) ' = 10 x + 3 = g ( x)
Ainsi, pour trouver une primitive F ( x ) d’une fonction f ( x ) on doit démontrer que f ( x ) est la
dérivée de F ( x ) .

Remarque :
Certaines fonctions ne possèdent pas de primitives. De plus, il n’est pas toujours possible d’exprimer par
une fonction usuelle une primitive d’une fonction continue.

2 ) Propriétés

La primitive est tellement liée à la dérivation qu'elle en a adopté les qualités et les défauts. Ainsi :

• Elle est parfaitement compatible avec l'addition, la soustraction et la multiplication par un réel.
C'est-à-dire que si u et v sont deux fonctions alors :


Primitive (u + v) = Primitive (u) + Primitive (v)

Primitive (u - v) = Primitive (u) – Primitive (v)

Primitive (λ u) = λ Primitive (u)

• Mais elle ne laisse passer ni produit, ni l'inversion, ni le quotient, ni la composition.
Ainsi si u et v sont deux fonctions alors :


Primitive ( u v ) n'est pas Primitive ( u ) . Primitive ( v )

Primitive ( 1 / u ) n'est pas 1 / Primitive ( u )

Primitive ( u / v ) n'est pas Primitive ( u ) / Primitive ( v )

Primitive ( u o v ) n'est pas Primitive ( u ) o Primitive ( v )


Théorème :

Toute fonction continue sur un intervalle I admet des primitives sur I .




3
$6.65
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
vivin02pro

Also available in package deal

Get to know the seller

Seller avatar
vivin02pro Montpellier I
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
8
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions