100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Mathématiques - Dérivabilités

Rating
-
Sold
-
Pages
17
Uploaded on
01-03-2023
Written in
2020/2021

Le document est un cours sur les fonctions et la dérivation en mathématiques. Il est organisé en deux grandes parties, chacune subdivisée en unités et sous-unités. La première partie, intitulée "Approche graphique et nombre dérivé", comprend trois sections. La première section est une introduction générale. La deuxième section présente une approche graphique de la notion de dérivée. La troisième section s'intéresse au nombre dérivé, avec une définition, une interprétation graphique et une distinction entre le nombre dérivé à gauche et à droite. La deuxième partie, "Fonction dérivée", comprend six sections. La première section explique comment effectuer une dérivation sur un intervalle. La deuxième section présente les dérivées des fonctions usuelles. La troisième section énonce les règles de dérivation, notamment la forme f+g, kf, f x g, f x f, 1/f et f/g, et un tableau récapitulatif des opérations sur les fonctions dérivables. La quatrième section traite de la dérivée d'une fonction composée. La cinquième section explore les dérivées et les variations. La sixième et dernière section se concentre sur la recherche des extrema d'une fonction, avec une définition et des exemples d'application. Chaque sous-unité du document contient des explications détaillées, des définitions, des exemples et des théorèmes pour aider les étudiants à comprendre les concepts. Le document comprend également des tableaux et des graphiques pour illustrer les différentes notions et les aider à mieux comprendre les relations entre les concepts.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 1, 2023
Number of pages
17
Written in
2020/2021
Type
Other
Person
Unknown

Subjects

Content preview

L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 2:
Dérivabilité

Table des matières

Unité 1 - Approche graphique et nombre dérivé ...................................................................... 2
I - Introduction ................................................................................................................................. 2
II - Approche graphique................................................................................................................... 3
III - Nombre dérivé ........................................................................................................................... 4
1 ) Définition............................................................................................................................................... 4
2 ) Interprétation graphique : équation d’une tangente ................................................................................. 5
3 ) Nombre dérivé à gauche, nombre dérivé à droite .................................................................................... 6
Unité 2 - Fonction dérivée......................................................................................................... 7
I - Dérivation sur un intervalle ........................................................................................................ 7
II - Dérivées des fonctions usuelles .................................................................................................. 7
III - Règles de dérivation .................................................................................................................. 8
1 ) Forme f+g .............................................................................................................................................. 8
2 ) Forme kf (k réel) .................................................................................................................................... 8
3 ) Forme f x g ............................................................................................................................................ 9
4 ) Forme f x f ............................................................................................................................................. 9
5 ) Forme 1/f ............................................................................................................................................. 10
6 ) Forme f/g ............................................................................................................................................. 10
7 ) Tableau récapitulatif des opérations sur les fonctions dérivables :......................................................... 11
8 ) Exemples de dérivation nécessitant l’utilisation de différentes opérations ............................................. 12
IV - Dérivée d’une fonction composée ........................................................................................... 13
V - Dérivées et variations ............................................................................................................... 14
VI - Recherche des extrema d’une fonction .................................................................................. 14
1 ) Définitions et propriétés ....................................................................................................................... 14
2 ) Exemple d’application.......................................................................................................................... 16




Page

,L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




Module 2:
Dérivabilité

Unité 1 - Approche graphique et nombre dérivé

I - Introduction

Le « taux de variation » mesure la variation relative entre deux grandeurs, il peut représenter
par exemple un taux d'évolution entre deux dates.

Mathématiquement, c'est l'écart entre deux valeurs prises par une fonction rapporté à l'écart
qui existe entre leurs deux antécédents.

f ( x) − f (a)
taux de variation =
x−a

Donc, ici, a et x correspondent à deux abscisses.

Il est équivalent de raisonner directement avec l'écart entre a et x, qu'on appelle généralement
h , soit : h = x − a ce qui permet d’écrire : x = a + h


f ( a + h) − f ( a )
taux de variation =
h

Pourquoi évoquer ces notions ici ?

Parce que la définition de la dérivée en un point a , f  ( a ) ,fait intervenir le taux de
variation.

C'est la limite de celui-ci lorsque h tend vers zéro.


f ( a + h) − f ( a )
f '(a) = lim
h →0 h




Page

, L1-SDG-Mathématiques 1 P. Loup - L. Bonifas




II - Approche graphique

La dérivée est un outil mathématique qui permet de déterminer la pente d'une courbe.

Prenons une fonction f et un point a sur l'axe des abscisses et essayons de mesurer la pente de
la courbe au point M d'abscisse a.




Cette pente est égale à la pente de sa tangente au même point.


On sait calculer la pente c d'une droite qui passe par deux points A et B avec la formule :


yB − y A
c=
xB − xA

Mais ici nous n'avons qu'un point M.
Prenons donc un nombre h au hasard et plaçons sur la courbe le point N d'abscisse a+h.




Les points M et N ont pour coordonnées :

M (a, f (a))
N(a+ h, f (a+ h))

La droite (MN) a donc pour coefficient directeur :

f (a+ h) - f (a) f (a+ h) - f (a)
c= =
(a+ h) - a h




Page
$6.65
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
vivin02pro

Also available in package deal

Get to know the seller

Seller avatar
vivin02pro Montpellier I
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
8
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions