100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

36. Vl Ana1LinA Vektorräume mit Skalarprodukt 2

Rating
-
Sold
-
Pages
8
Uploaded on
08-02-2023
Written in
2022/2023

Dies ist eine vollständige Vorlesungsmitschrift zur 36. Vorlesung des Moduls Analysis I und lineare Algebra für Ingenieurswissenschaften. In dieser Vorlesung werden verschiedene Verfahren zur Orthonormalisierung thematisiert. Dabei werden vor allem das Gram-Schmidt-Verfahren und die QR-Zerlegung erklärt. Außerdem wird auch die lineare Regression besprochen. Die Grundlagen von Skalarprodukt, Norm, Orthonormalisierung und weiteren Themen werden in der 35. Vl "Vektorräume mit Skalarprodukt 1" thematisiert.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 8, 2023
Number of pages
8
Written in
2022/2023
Type
Class notes
Professor(s)
Penn-karras
Contains
All classes

Subjects

Content preview

kürzeste Abstände
Gerade N Müll 1
fügen orthogonale Projektionvon ü auf ü


NE Bedingung Lütt Ü Ttt o



nä E aus O ä E
L
Küng
ü ü L
KE E a a E E ü ü


ü ü ü orthogonale Projektion von ü auf span ü

Fürwelches x ist derAbstandvon ü zu nä minimal

IT null min Es E ü ü nä min

E nä u EE ET ti üü
aEEE.ge
Hüll 2x ü ü t a


a F ä KE E DEN min

wirdminimal für a ü ü

die orthogonale Projektion E üü ü istdieStelle mit
dem kleinstenAbstand
W I K.r
Derkleinste Abstand des durch EE R beschriebenen Punktes zur

Gerade span ü F1 ist
KE.EC
qp
undwird in der orthogonalen Projektion

LEE ü

angenommen

, allgemeineres Problem T

Sei V ein Vektorraum mitSkalarprodukt
und U span un äh ein Teilraum
zu
von V wobei an ü eine Orthonormalbasis
desTeilraumes h ist

Sei T E V
Dann ist der kleinste Abstandvon ü za k gegeben

HE EILEEp Gl HÜPFTE
Die Stelle an der der kleinste Abstandangenommen wird
ist die orthogonale Projektion

IECETI Tj

Bsp 1
E
f span
f FEY
ü ü
ü undüz SindOrthonormalbasis
von U



ÄTETER
Iiii
KÜN VAT IT


Üü En E Er
orthogonale Projektion



TIEFEEHÄHE
$3.62
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
VRK

Also available in package deal

Get to know the seller

Seller avatar
VRK Technische Universität Berlin
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
3 year
Number of followers
1
Documents
53
Last sold
3 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions