100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Micro - Exam 2014 - Questions & Answers

Rating
-
Sold
-
Pages
9
Uploaded on
11-05-2016
Written in
2014/2015

The exam of 2014 with the official answers

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 11, 2016
Number of pages
9
Written in
2014/2015
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

Note. These answer keys give more detail than you were expected to write down. You should skip
some of the intermediate skip for space.


Part I: Weeks 1 through 3
1. Technology and Profits. [14 pts.]

(a) Calculate the degree of homogeneity in the CES case
1 1
q = f (z1 , z2 ) = (αz12 + (1 − α)z22 )4

where q is output and z1 and z2 are inputs, all other symbols are parameters. Does a
characterization of the returns to scale depend on the size of the scaling factor (i.e., t ≥ 1
or t < 1)? [5]
(b) Consider a two-input Cobb Douglas function that has increasing returns to scale. Is this
compatible with decreasing marginal products? Support your answer with a calculation.
It is okay to consider a specific example. [6]
z2

(c) Consider the map of isoquants on the right. In a thought
experiment, we superimpose an iso-profit plane on it that
just touches the production frontier along many points—
depicted as dashed vertical line. Can such a pattern be ob-
served when the technology is of the Cobb Douglas form?
Motivate your answer. [3] z1

ANSWER

(a) Using scaling factor t and applying rules of elementary algebra, we find
1 1 1 1 1 1
f (tz1 , tz2 ) = (αt 2 z12 + (1 − α)t 2 z22 )4 = t2 (αz12 + (1 − α)z22 )4 = t2 f (z1 , z2 )

Homogeneous of degree 2. If t = 0.5, then 0.52 = 0.25 < 1, but since we are shrinking the
scale, this is compatible with increasing returns to scale.
common mistakes and difficulties
1 1
• f (tz1 , tz2 ) = (α · t · z12 + (1 − α) · t · z22 )4
• f (tz1 , tz2 ) = α4 · t2 · z21 + (1 − α)4 · t2 · z22
• various other problems associated with elementary rules of algebra (esp. how to deal
with exponents)
• misperception of tr indicating IRTS because t > 1 (instead of r > 1)
(b) Yes: Without loss of generality
q = z1α zr2−α , α>0
and r > 1 for returns to scale to increase. Marginal product for, say input 2 is

∂q
= (r − α)z1α zr2−α z2−1 = q(r − α)/z2
∂z2


1
$3.62
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jipclaassens
5.0
(1)

Also available in package deal

Get to know the seller

Seller avatar
jipclaassens Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
5
Member since
9 year
Number of followers
4
Documents
20
Last sold
5 year ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions