100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Statistiek 1: Een Introductie (ESSB-E1030)

Rating
-
Sold
-
Pages
14
Uploaded on
23-01-2023
Written in
2022/2023

Samenvatting Statistiek 1: Een Introductie (ESSB-E1030)

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 23, 2023
Number of pages
14
Written in
2022/2023
Type
Summary

Subjects

Content preview

Bijeenkomst 7
𝛔
De margin of error bij 95% betrouwbaarheidsinterval = Z* √𝐧
->Let op! De Z moet worden gedeeld door 2 vanwege de 2 uiteinden aan het eind van de grafiek.
Dus bij 95%, hou je 5% over. 5 : 2 = 2,5%. Dus je moet in de tabel de z-score opzoeken voor 97,5 %



P-waarde
= De waarschijnlijkheid, als H0 waar is, dat de test statistic een extreme waarde of meer extreme
waarde dan wat geobserveerd is aanneemt. (gebaseerd op het verschil tussen H0 en HA)
Hoe kleiner de P-waarde, hoe sterker het bewijs tegen H0.

➢ > = 1 – [z-score aflezen uit tabel]
➢ < = [z-score aflezen uit tabel]
➢ ≠ = 2 x z-score aflezen uit tabel]



4 stappen van statistische toetsing

1. H0 = μ Ha= < ; > of ≠ aan H0
2. Test statistic
schatting − hypothesized value x̅− μ0
𝑧 = standaarddeviatie van de schattings
oftewel 𝑧 = σ
√n
3. Bereken de P-waarde
(zoals wat in het kopje hierboven staat; >;<;≠)
4. Vergelijk de gevonden p-waarde met significantieniveau α.
❖ α = 0.05 -> hier moet het kleiner zijn om H0 te verwerpen
❖ z= 1.65 -> hier moet het groter zijn om H0 te verwerpen



Power berekenen

1. 𝑥̅ bij significantieniveau α
x̅− μH0 σ
𝑧 = σ -> 𝑥̅ = Z* √n + μH0 -> 𝑥̅= ….
√n
2. Die gevonden 𝑥̅ invullen
x̅− μHA
𝑧 = σ -> Z=…..
√n
3. Power berekenen door die gevonden z-score in te vullen
4. Er is genoeg power bij 80%
Het antwoord wat je krijgt, betekent namelijk hoeveel kans/% er is om H0 te verwerpen



Veel voorkomende z-scores bij de bijbehorende C

, Confidence intervallen
Confidence intervallen hebben de vorm estimate ± margin of error. Oftewel, = 𝑥̅ ± margin of error

➢ De estimate = de gok voor de onbekende waarde van de parameter.
De sample mean 𝑥̅ is een unbiased estimator van μ.
➢ De margin of error = zegt hoe zeker we ervan zijn dat het interval de echte mean μ zal bevatten.
𝛔
Margin of error = Z* √𝐧
De margin of error in een confidence interval heeft alleen betrekking op random sampling errors.


Als je een te grote margin of error hebt, dan heb je drie opties:

1) Gebruik een kleiner level of confidence (kleinere C→kleinere z*→kleinere m)
2) Kies een grotere sample (grotere n→delen door grotere wortel→kleinere m)
3) Verklein σ

Let op dat de grootte van de sample de margin of error bepaalt. De grootte van de populatie
bepaalt niet de sample size die we nodig hebben.
Het confidence interval voor een populatiegemiddelde heeft een aangegeven margin of error m als
z ∗σ
de sample size is 𝑛 = ( 𝑚 )2

❖ Het uiteindelijke aantal van bruikbare observaties is meestal minder dan van tevoren
gepland was. (door bijvoorbeeld non-response)

Een significantietest
= gebruiken we om geobserveerde data te vergelijken met een hypothese (stelling over populatie
parameters) waarvan de waarheid geschat moet worden. De resultaten van zo’n test worden gegeven in
waarschijnlijkheden die meten hoe goed de hypothese en de geobserveerde data overeenkomen.

De vier stappen in een significantietest zijn:

1) Stel de null hyposthesis H0 op en stel de alternative hypothesis Ha op. De test gaat de sterkte
van H0 beoordelen met het bewijs tegen H0. Als H0 verworpen kan worden, nemen we Ha als
waar.
2) Bereken de waarde van de test statistic, waarop de test wordt gebaseerd. Die statistic meet hoe
ver de data van H0 liggen.
𝑠𝑐ℎ𝑎𝑡𝑡𝑖𝑛𝑔 − ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 x̅− μ0 σ
𝑧 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑒 𝑣𝑎𝑛 𝑑𝑒 𝑠𝑐ℎ𝑎𝑡𝑡𝑖𝑛𝑔𝑠
=𝑧 = σ/√n
3) Vind de P-value voor de geobserveerde data. Dat is de kans, aangenomen dan H0 waar is, dat de
test statistic minstens net zo sterk tegen H0 is als tegen de data.
4) Trek een conclusie. Dat kan door een significance level α te kiezen, dat is de hoeveelheid bewijs
tegen H0 die jij nodig vindt. Is P≤α, dan is Ha waar. Is P≥α, dan is er niet genoeg bewijs om H0 te
verwerpen.

Power
= de waarschijnlijkheid dat een level apha test Ha kiest (H0 verwerpt) wanneer een alternatieve value
van de parameter waar is.

Hoge power is goed, omdat dan de kans op een type II error klein is

Power van een fixed-level test = 1 – de kans op een type II error voor dat alternatief
$4.79
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
joycevries Erasmus Universiteit Rotterdam
Follow You need to be logged in order to follow users or courses
Sold
610
Member since
2 year
Number of followers
132
Documents
76
Last sold
1 day ago

Mocht je vragen, opmerkingen of tips hebben over mijn samenvattingen kan je me gerust een mailtje sturen ()!

4.3

85 reviews

5
43
4
28
3
11
2
1
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions