100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Class notes of Philosophy and Ethics for Data Science

Rating
2.0
(1)
Sold
5
Pages
12
Uploaded on
18-01-2023
Written in
2022/2023

This summary contains class notes from the lectures and a summary of the provided slides.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 18, 2023
Number of pages
12
Written in
2022/2023
Type
Class notes
Professor(s)
Dr. carlos zednik
Contains
All classes

Subjects

Content preview

Philosophy and Ethics for Data Science
0LM190


1. THEORY

1.1 WHY PHILOSOPHY AND ETHICS?
Philosophy: a search for conceptual clarity; careful and rigorous justification.

Branches of Philosophy:
- Metaphysics. Reality
- Epistemology. Knowledge
- Philosophy of religion. Religion
- Aesthetics. Beauty
- Ethics. Good

Philosophy of AI: it aims to provide careful and rigorous justification for claims that involve the concept
of ‘intelligence’. By reflecting on the meaning of ‘intelligence’, and by considering the differences
between things that have intelligence and things that do not, we can better address foundational
questions that motivate and shape the discipline of Artificial Intelligence. By addressing these
questions, we can better understand the reasons for doing what we do, when we do AI. And, we can
better understand the consequences of what we do, when we do AI.

Ethics of AI: Some of the reasons for doing AI, and some of the consequences of doing AI, have an
ethical aspect. They are questions about what we should or should not do. It relates to the
development and use of AI.


1.2 THE TURING TEST
Necessary criterion: given a necessary criterion, we would be able to determine that certain things are
not intelligent.
Sufficient criterion: we accept the possibility that some S is intelligent even if it does not possess
property P.

There are different kinds of criteria:
• Biological criteria. The properties relevant to the attribution of intelligence are the
properties of biological organisms.
• Computational criteria. The properties relevant to the attribution of intelligence are
the ones that define certain classes of computational systems.
• Behavioural criteria. The properties relevant to the attribution of intelligence are a
system’s (overt and measurable) behavioural properties.

Overly restrictive chauvinism: non-biological entities are excluded from the consideration.
Excessive liberalism: many organisms possess the relevant biological properties.

Computational limitations: does intelligence have features that can’t be replicated computationally?
Cognitive scientific uncertainty: we don’t even know that human beings really are computational
systems, so why suppose that any kind of computation is sufficient for intelligence?

, The Turing Test Criterion: S does well at the Imitation Game → S is intelligent. (behavioural)

Objection: Many intelligent things are clearly incapable of doing well at the Imitation Game.
Real objections:

Argument from various disabilities. The Imitation Game as described by Turing only considers
verbal behaviour. But this is an arbitrary restriction. Analogous scenarios could be designed to consider
many other kinds of behaviour.
Total Turing Test Criterion: S “fools” humans in any conceivable context → S is intelligent.

Lady Lovelace’s objection. The machine can easily play the Imitation Game with predefined
answered. This does not reveal anything about the intelligence of the machine, but rather the
programmers. This is less compelling as our ability to control and predict the behaviour decreases.
Pretense: can’t something behave as if it is intelligent, without actually being intelligent?


1.3 SYMBOLIC AI
Rule-Based Symbol-Manipulators: A computer was a person who performed mathematical
operations. Nowadays, it is more a physical system that does what human computers used to do.

Implementation: When is a physical system a computer?
Interpretation: Which aspects of intelligence can computers replicate?

A physical system is a computer if it implements a Turing Machine.
Turing Machine: Given a finite alphabet of tape symbols, a finite set of states, it is a table of transition
rules from one (symbol, state) pairing to another.

Every computable problem can be solved by some TM (rule-based manipulation of symbols). A
universal TM can solve all such problems. All programmable computers are universal Turing Machines.

Proof that AI is possible:
P1. We can design a TM to solve any computable problem.
P2. All “interesting” problems are computable.
C1. Thus, we can design a TM to solve any “interesting” problem.
P3. Being intelligent is being able to solve “interesting” problems.
C2. We can design a TM that is intelligent.
P4. A digital computer can implement any TM.
C3. We can build a digital computer that is intelligent.
→ AI is possible.

Physical Symbol System: an implemented Turing Machine with interpretable symbols (computational)
A physical symbol system has the necessary and sufficient means for general intelligent action.

• Every intelligent organism is a physical symbol system.
• Every intelligent action is the result of a series of rule-based symbol-manipulations.
• Every task that can be solved through the exercise of intelligence can be described as a series
of transitions between symbolic states.

A major challenge for Symbolic AI is to codify rules that allow computers to solve all relevant
problems in any given situation, while ignoring the irrelevant ones.
The Frame Problem: it is difficult to distinguish the relevant from irrelevant problems in any given
real-world context.

Reviews from verified buyers

Showing all reviews
1 year ago

2.0

1 reviews

5
0
4
0
3
0
2
1
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
datasciencestudent Technische Universiteit Eindhoven
Follow You need to be logged in order to follow users or courses
Sold
39
Member since
5 year
Number of followers
31
Documents
15
Last sold
8 months ago

3.5

2 reviews

5
1
4
0
3
0
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions