100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Differentiëren

Rating
-
Sold
3
Pages
17
Uploaded on
18-01-2023
Written in
2022/2023

Dit is een samenvatting voor het vak differentiëren gegeven aan de hva (en alle andere opleidingen tot leraar wiskunde) in de samenvatting wordt ingegaan op H2,3 en 4 van Steward de handout van differentiëren met extra informatie

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofstuk 2 t/m 4
Uploaded on
January 18, 2023
Number of pages
17
Written in
2022/2023
Type
Summary

Subjects

Content preview

Omvattend

Stewart, J. Calculus, Early Transcendentals, Metric Version, negende druk (ISBN:9780357113516)

- Hoofdstuk 2 (m.u.v. 2.4)
- Hoofdstuk 3 (3.1 tot en met 3.6 m.u.v. 3.5)
- Hoofdstuk 4 (4.1 4.3 4.5 4.7)

Hand-out differentiëren HVA

,Hoofdstuk 2

2.1
tangent = raaklijn

een raaklijn kan je vinden door (∆Y : ∆X)

voor snelheid doe je s = v x t (plaats = snelheid x tijd)



2.2
Bestaat x voor een bepaalde waarde niet (bijvoorbeeld bij een breuk) en je wilt daar wel de y waarde
weten. Dan gebruik je een limiet

Vb (x-1) / (x^2 -1)

Je wilt weten x=1

Maak 2 tabellen. 1 met waardes steeds dichter naar 1 vanaf onder, en een vanaf boven

hier zul je zien dat de y waardes f(x) steeds dichter naar 0,5 gaan. Hoe dichter x dus naar 1 gaat hoe
dichter y bij 0,5 komt. Dit noem je het limiet voor x gaat naar 1 is een 0,5




Hierbij geld wel dat het limiet alleen bestaat als beide tabellen (dus zowel vanaf beneden als vanaf
boven) naar 0,5 gaat. Gaan ze naar 2 verschillende waarden dan bestaat het limiet niet.



Limieten kunnen ook naar oneindig (of min oneindig) gaan. Dit is zo als de limieten aan beide kanten
naar hetzelfde gaan, maar deze waarde oneindig groot kan worden)

Vb lim (x -> 0) voor 1/ (x^2)

Hoe dichter je x bij 0 kiest hoe groter de waarde van y wordt

Als x op een bepaalde waarde naar oneindig gaat dan is daar een verticale asymptoot (de grafiek kan
dan niet voorbij deze x waarde)

Verticale asymptoten kan je vinden wanneer de noemer van een breuk 0 is

, 2.3
Limiet regels




1 & 2 limieten mag je opsplitsen als er een plus of min instaat

3 staat er een constante voor het limiet dan mag je deze er buiten halen

4 & 5 limieten mag je opsplitsen als er een vermenigvuldiging of breuk instaat




Limiet regel 6

- Staat er een macht bij een limiet dan mag je ook de uitkomst van het limiet in de macht doen

Limiet regel 7

- Staat er een wortel in het limiet, dan mag je de uitkomst van het limiet in de wortel doen

Limiet regel 8 & 9

(zie foto)




Hoe vind je het antwoord van een limiet

Vb (lim (x->1) voor (x^2 -1) / (x-1)

Als we in deze formule 1 invullend dan delen we door 0 en dat mag niet

Daarom gaan we de bovenkant van de formule herschrijven naar (x-1)(x+1) dit is een merkwaardig
product.

Omdat we nu zowel boven als onder de streep (x-1) hebben, mogen we die wegstrepen.

Dan houden we over (x+1) hierin kunnen we wel x = 1 invullen
$9.66
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
sabinevanderlip

Get to know the seller

Seller avatar
sabinevanderlip Hogeschool van Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
7
Member since
2 year
Number of followers
3
Documents
5
Last sold
7 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions