2023
SUMMARY:
Introduction to Research in Marketing
Tilburg University
Course Number: 328049-M-6
,Table of Contents
Lecture 1 ................................................................................................................................................1
Lecture 2 - ANOVA..................................................................................................................................4
Lecture 3 - Linear Regression..................................................................................................................8
Lecture 4 - Logistic Regression..............................................................................................................12
Lecture 5 - Factor analysis....................................................................................................................17
Lecture 6 - Conjoint Analysis................................................................................................................22
Lecture 7 - Cluster analysis...................................................................................................................26
Lecture 1
1
, Total error framework
What you observe = True value + Sampling error + Measurement error + STATISTICAL
ERROR (What you don’t observe)
! If you mess up Sampling error/Measurement error/STATISTICAL ERROR your results will
be biased & your recommendations will be wrong
Statistics
Characteristics of the sample
→ Estimate the parameters
Parameters
Characteristics of the population
Sampling error
Error that is due to a sample that is not representative of the population
> Sample differs (significantly) from the population
FE: Non-response error (Sample of respondents differs (significantly) from the population
Solution
Stratification weights
Make your sample closer to your population by using post-stratification weights
Measurement Error
Measurement Scales
2
SUMMARY:
Introduction to Research in Marketing
Tilburg University
Course Number: 328049-M-6
,Table of Contents
Lecture 1 ................................................................................................................................................1
Lecture 2 - ANOVA..................................................................................................................................4
Lecture 3 - Linear Regression..................................................................................................................8
Lecture 4 - Logistic Regression..............................................................................................................12
Lecture 5 - Factor analysis....................................................................................................................17
Lecture 6 - Conjoint Analysis................................................................................................................22
Lecture 7 - Cluster analysis...................................................................................................................26
Lecture 1
1
, Total error framework
What you observe = True value + Sampling error + Measurement error + STATISTICAL
ERROR (What you don’t observe)
! If you mess up Sampling error/Measurement error/STATISTICAL ERROR your results will
be biased & your recommendations will be wrong
Statistics
Characteristics of the sample
→ Estimate the parameters
Parameters
Characteristics of the population
Sampling error
Error that is due to a sample that is not representative of the population
> Sample differs (significantly) from the population
FE: Non-response error (Sample of respondents differs (significantly) from the population
Solution
Stratification weights
Make your sample closer to your population by using post-stratification weights
Measurement Error
Measurement Scales
2