100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Case

Solutions Book Exercises

Rating
-
Sold
-
Pages
14
Grade
A
Uploaded on
29-11-2022
Written in
2022/2023

Solutions Book Exercises

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 29, 2022
Number of pages
14
Written in
2022/2023
Type
Case
Professor(s)
Peter de goeij
Grade
A

Subjects

Content preview

CHAPTER 24: PORTFOLIO PERFORMANCE EVALUATION


CHAPTER 24: PORTFOLIO PERFORMANCE EVALUATION

PROBLEM SETS

1. The dollar-weighted average will be the internal rate of return between the initial and
final value of the account, including additions and withdrawals. Using Excel’s XIRR
function, utilizing the given dates and values, the dollar-weighted average return is as
follows:
Date Account
1/1/2019 -$148,000.00
1/3/2019 $2,500.00
3/20/2019 $4,000.00
7/5/2019 $1,500.00
12/2/2019 $14,360.00
3/10/2020 -$23,000.00
4/7/2020 $3,000.00
5/3/2020 $198,000.00
26.99%
=XIRR(C13:C20,B13:B20)

Since the dates of additions and withdrawals are not equally spaced, there really is no
way to solve this problem using a financial calculator. Excel can solve this very
quickly.


2. As established in the following result from the text, the Sharpe ratio depends on both
alpha for the portfolio (  P ) and the correlation between the portfolio and the market
index (ρ):
E (rP − rf ) αP
= + ρS M
σP σP
Specifically, this result demonstrates that a lower correlation with the market index
reduces the Sharpe ratio. Hence, if alpha is not sufficiently large, the portfolio is
inferior to the index. Another way to think about this conclusion is to note that, even
for a portfolio with a positive alpha, if its diversifiable risk is sufficiently large,
thereby reducing the correlation with the market index, this can result in a lower
Sharpe ratio.


3. The IRR (i.e., the dollar-weighted return) cannot be ranked relative to either the
geometric average return (i.e., the time-weighted return) or the arithmetic average
return. Under some conditions, the IRR is greater than each of the other two averages,
and similarly, under other conditions, the IRR can also be less than each of the other
averages. A number of scenarios can be developed to illustrate this conclusion. For

24-1
Copyright ©2021 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of
McGraw-Hill Education.

, CHAPTER 24: PORTFOLIO PERFORMANCE EVALUATION


example, consider a scenario where the rate of return each period consistently
increases over several time periods. If the amount invested also increases each period,
and then all of the proceeds are withdrawn at the end of several periods, the IRR is
greater than either the geometric or the arithmetic average because more money is
invested at the higher rates than at the lower rates. On the other hand, if withdrawals
gradually reduce the amount invested as the rate of return increases, then the IRR is
less than each of the other averages. (Similar scenarios are illustrated with numerical
examples in the text, where the IRR is shown to be less than the geometric average,
and in Concept Check 1, where the IRR is greater than the geometric average.)


4. It is not necessarily wise to shift resources to timing at the expense of security
selection. There is also tremendous potential value in security analysis. The decision
as to whether to shift resources has to be made on the basis of the macro, compared to
the micro, forecasting ability of the portfolio management team.

5. a. Arithmetic average: ̅rABC = 10%; ̅rXYZ = 10%

b. Dispersion: σABC = 7.07%; σXYZ = 13.91%
Stock XYZ has greater dispersion.
(Note: We used 5 degrees of freedom in calculating standard deviations.)

c. Geometric average:
rABC = (1.20 × 1.12 × 1.14 × 1.03 × 1.01)1/5 – 1 = 0.0977 = 9.77%
rXYZ = (1.30 × 1.12 × 1.18 × 1.00 × 0.90)1/5 – 1 = 0.0911 = 9.11%
Despite the fact that the two stocks have the same arithmetic average, the
geometric average for XYZ is less than the geometric average for ABC. The
reason for this result is the fact that the greater variance of XYZ drives the
geometric average further below the arithmetic average.

d. Your expected rate of return would be the arithmetic average, or 10%.

e. Even though the dispersion is greater, your expected rate of return would
still be the arithmetic average, or 10%.

f. In terms of “forward-looking” statistics, the arithmetic average is the
better estimate of expected rate of return. Therefore, if the data reflect
the probabilities of future returns, 10 percent is the expected rate of
return for both stocks.


6. a. Time-weighted average returns are based on year-by-year rates of return:
Year Return = (Capital gains + Dividend)/Price
2018 − 2019 [($120 – $100) + $4]/$100 = 24.00%
2019 – 2020 [($90 – $120) + $4]/$120 = –21.67%

24-2
Copyright ©2021 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of
McGraw-Hill Education.
$4.82
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
PVives

Get to know the seller

Seller avatar
PVives Tilburg University
Follow You need to be logged in order to follow users or courses
Sold
6
Member since
3 year
Number of followers
3
Documents
19
Last sold
2 weeks ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions