100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Zusammenfassung Mathe 1 für Bauingenieure/Maschinenbauingenieure

Rating
-
Sold
-
Pages
1
Uploaded on
22-11-2022
Written in
2022/2023

Zusammenfassung Mathematik 1 für Bau-/Maschinenbauingenieure; Kapitel 1 Mengen und Kapitel 2 Funktionen

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 22, 2022
Number of pages
1
Written in
2022/2023
Type
Summary

Subjects

Content preview

Funktionen Eigenschaften reeller Funktionen

Mengen Zusammenfassung bestimmter wohl unterscheidbarer ein Element

= ordnet jedem Element ✗ c- ☐
yt 2- zu

monoton wachsend f / ✗ 1) HK )
-




Ganzen
wenn ≤ für alle ✗ ✗ ED mit ✗ < ×,
Objekte ZU einem
Definitions menge

„ z
,
f D=

]
: D z
2- = Ziel Menge
• monoton fallend wenn
f- ( ✗ n ) ≥ f- ( Xz) für alle ✗ „ ✗ z ED mit × ,
> ✗ z

flx ) y wachsend f ( ✗ 2) für alle ✗ „ ✗ ZED mit

-




streng f- ( ✗ e) < wenn
-



monoton Xr ✗
{ 31619 }
<
Elemente : Einzelne Objekte einer Menge - M =
* monoton fallend wenn f- ( ✗ ) > flxz ) für alle ✗
z



der Funktion f

streng 11×2 ED mit ^
✗ e > xz
✗ =
Argument • beschränkt , wenn es eine Zahl C ER gibt , sodass IHN / ≤ c für alle ✗ ED
Mengen durch
Angabe von =
Bild von ✗ unter f →
eindeutig bestimmt
tun => Beschränkung → f Über / unterschreitet diese nicht

vollständige Aufzählung
M :
{2%20121}={2%20} =
Urbild von
y unter f → nicht
eindeutig bestimmt
gerade wenn flx ) fl x ) achsen symmetrisch
unvollständige Aufzählung :{ 11213 } nicht eindeutig ↓ =

-




M



. . .



Es kann ZU einem YEZ
Angabe von Eigenschaften p, {✗ } ungerade wenn f- ( x ) FC x) → Punktsymmetrisch Zum Ursprung =
-



Ep :O
• • -




≥g
=
× ^ Urbild kein Urbild
periodisch und f- ( ✗ FCH


1
( mit Periode L / periodisch) wenn D= IR + L)
-




mit der • L - -




Oder mehrere geben ,
Eigenschaft ßsp .
sinus / cosinus

Mengen von Zahlen Definitions Menge : x -
Werte ( alle Werte , die man für ✗ einsetzen kann)
Intervalle für f- ( x ) dummen Und Produkt Zeichen
Ziel menge y Werte ( Wertemenge ; EIN an EIR
was alles
-
n an
rauskommt , wenn
: -


, . ..




µ =
natürliche Zahlen =
{ 1,2 } } , . . .




[ab] :
{ ✗ EIR a ≤ ✗ ≤ b } geschlossen man jede Zahl aus der Definitions Menge einsetzt ) Summe :
produkt :



Nö natürliche Zahlen mit 0 Bild Menge :
alle Werte, die möglich sind Z n

{✗ } offen y
-


n
( ap ) ER a < ✗ < b
[ ai
:
Zahlen E. 1,011 }
.




Bild Menge Um +
Um -11
.




z
=
.




ganze an
= . .




-1T
. ..


=
.
→ = am .

am -11 .
an
rationale Zahlen
{f- PER , q
. .




} [aib ) Laib ] halboffen
.





{ ED :-( ( ) Ey } für dieR
" M
-




EIN
M Man setzt f- ( y ) I
-

=


Menge aller Urbilder
:


,
= ✗ x
Menge aller Dezimal zahlen
=


↳ reelle Zahlen Fakultät :
Bsp 5 ! = 1 .

2 .
3 .

4.5
Eigenschaften
.




Beziehungen Zwischen Mengen
jedem Wert höchstens 1 Wert →
Rechenregeln :
n
injektiv → zu y ✗
-


n
-




[ ak {
=
haben dieselben Elemente Ak )
a) M N → Mund N
f- ( ✗ ) flxz ) Ausklammern / Aus multiplizieren ( ( •



×, ≠ × c.
:
= =
, n •


"="
B
b) 1- ist Teilmenge von
A gurjektiv → zu jedem y
-

Wert mindestens tx -
Wert E- m \

B
Bf ( BildMenge) Z ( Ziel Menge) Summe zweier Summen n
⑥B


A oder B > A wenn = : n n


Teilmenge von bijektiv → wenn surjektiv und injektiv
→ nur bei
gleichen Start lschlussindex
-




[ 9kt [ bk =

[ ( aktbk )
E- m Kim
Wert für ein ✗ Wert Kim
genau 1
-




y
-




Mengen Operation DFZ"
• Index verschiebung :
n
n L
Umkehr funktion jedem YEZF ein ✗ C-
-




weist

[ du
-




z.B Zu summieren
:{
>
[
→ um
}
=
akte
.




AUB ✗ ✗ EA oder EB
a) Vereinigung ✗
:


" Umkehr funktion nur bildbar '⇐ m

f Zt Df '⇐ m l

}


JÄGER
-

:
ist !
wenn f bijektiv n
b) Schnitt 1- MB y :
{ ✗ : ✗ EA und EB } + ""
"




= "
" = " + " + " =
"
" """ "" P
" "




"" " →
""
① Y Und vertauschen


UF bilden
:
A und in Bist A B

auflösen und
c) Differenz AIB :{ × : ✗ EA "" d ✗ ¢-13} ¥1 von f
② nach
✗ und
×

y umtauschen
→ +
( A
◦ „ ne ,
aber nicht B) Tl L =
1 .


z .
. . .
'

N = M !
d) kartesisches Produkt AXB →
Menge aller geordneten Paare ,
Verkettung oder Komposition ^
deren erstes Element in A ✗

A ✗ B. =
{( ×
, y)
:
✗ EA
YEB }
und deren zweites Element h =
g

f- ( g "
verkettet mit f
"
/ "

g nacht
) "
Potenz und Wurzel ✗ → ✗ =
Basis ,
✗= Exponent
,
in B liegt
ab
= ( anbei anbz anbm) → n und m
liegen in AXB → Definitionsbereich für ✗ hängt vom Exponenten
{ '×nä-
×
falls
¥ }
. .

,
.




" n ≥ ^
① ✗ NE No ✗ ER × ✗ =
toren ◦




-17
= : =

;
,
,
◦ =
^
AXB bildet ein Rechteck in der ( n falls n=o
BI
-




HEERE Df Dg
i reellen Zahlen ebene IRXIR =
IRZ Zg 5

i
,

' → die zu verkettende hlx ) =
glx ) flx) ◦ ② negative ganzzahlige Exponenten und ✗ ≠ 0 ✗
"
=
# Beispiel : ✗ =
¥
a
Funktion lflx )) für
9 ( f /× ) In ? VF "
=
→ w ≥ 0
③ EIN ×
-




das in
glx / einsetzen
✗ n × ≥ 0 ✗ = w sodass gilt w _
= = :
" ✗ ,
,
' → keine negative
Regeln ×
E- ( NF)
N "" " defi "
Regeln ④ ✗ =

G- c- ④ ( p Ez , q EIN ) ,
× > 0 = > ✗ : =
✗ : =




Distributivgesetze a) Verkettung von 2 injektiven Funktionen ist injektiv

=
LA
Exponenten
i.
po , enten mit irrationalen
-




b) Verkettung von 2 bijektiven Funktionen ist bijektiv
(A
PIN
) VB ) ( )
( AUC
Xd
n
B MC
A V
NEIN

ER
=

die
• "
↳ rationaler Zahlen ✗
Bg Df beliebige Folge gegen
=
→(
^ ^ 1
✗ an =
ist eine
f g) f-
-




g-
=

konvergiert
◦ = ◦
A ,
B

ßffttf
NAVY c) Ist
für Umkehr funktion

f streng monoton , dann ist f injektiv
Rechenregeln
✗ + ß ✗
ß
c d) Sind fund 9 monoton wachsend , dann ist auch die ✗ = ✗ .


Verkettung fog monoton wachsend
( ✗ IP
✗ P"

An ( B VC ) = ( An B) V ( Anc ) e) f und g monoton fallend → Verkettung fog
=
( ✗ B) = ✗
monoton wachsend ? B P
( ✗ y) '

= ✗ .



y
f) Summe ,
Produkt und Verkettung zweier gerader
Funktion ist gerade I




g) Die Summe und Verkettung zweier ungerader
Funktionen ist ungerade . Ihr Produkt ist aber
gerade
$6.63
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
ma8

Get to know the seller

Seller avatar
ma8 Technische Universität Darmstadt
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
2
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions