100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Short Summary Molecular Genetics

Rating
-
Sold
-
Pages
18
Uploaded on
05-11-2022
Written in
2022/2023

Short summary of the information given in the Molecular Genetics course. Together with my longer summary I was able to get a 9.0 for my exam. This summary mainly contains the pathways and steps that are important.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 5, 2022
Number of pages
18
Written in
2022/2023
Type
Summary

Subjects

Content preview

Most Important information
Meselson-Stahl experiment
N15: heavier and thus this DNA strand will have a higher
density when incorporated. It was indeed incorporated
in the DNA strand
Then this DNA strand was put in another medium with
N14, these mixed and created an ‘intermediate’ density
gradient.

Initiation of replication in e.coli:
- oriC
- fully methylated by Dam methylase
- 6 proteins:
- DnaA: this is the initiator protein. It is an ATP-binding protein, and it is activated
when it is bound to ATP. DnaA-ATP binds in the fully methylated oriC. First in the
high affinity sites, then the DNA wraps around DnaA and it binds to the low affinity
sites that are AT-rich (easy to separate). It twists and melts the helix with the help of
HU
- Two DnaB/DnaC complexes. DnaB is an ATP-hydrolysis-dependent 5’-3’ helicase. It
unwinds the DNA by breaking the hydrogen bonds between the nucleotides. DnaC is
a chaperone. They form the two replication forks.
- Gyrase (Type II topoisomerase) relaxes DNA supercoils
- SSB (single-strand binding proteins) stabilize DNA, keep the replication bubble open,
protect against degradation of ssDNA from ss-specific-nucleases.

Joining of okazaki fragments
e.coli
 DNA polymerase III has only 3’-5’ exonuclease activity. It stops synthesizing DNA when
it finds a primer
 DNA polymerase I has both exonuclease activities. It degrades the primer with the 5’-3’
exonuclease activity and synthesizes new complementary DNA simultaneously
 DNA ligase ligates the adjacent fragments
Eukaryotes
Two-step process:
 DNA polymerase delta and helicase displace the primer, creating a 5’ flap.
Simultaneously the DNA polymerase fills the gap
 Flap endonuclease I (FEN1) cleaves the flap, removing the primer
 DNA ligase ligates the adjacent fragments

Replisome:
- 2x DNA polymerase (for lagging and leading strand)
- 2x dimerizing subunit T that link DNA pol. together
- 2x sliding clamp from B-rings that encircles the DNA and assures contact between
DNA and DNA polymerase
- Clamp loader (group of proteins) places the clamp on DNA, keeping all of the
structure together
The end problem
1

, a. Final Okazaki fragment cannot be primed, because primase doesn’t have space to
add a primer
b. The primer of the last Okazaki fragment is at the very last 3’ extreme, so it cannot be
removed and synthesized again by DNA polymerase

Spontaneous mutations:
 Point mutations
- Transitions
- transversions
 Insertions/deletions
- Can lead to frameshift mutation
 Replication slippage
- Micro/minisatellites
 Tautomerization

Induced mutations
 Chemicals
- Base analogs
 5-bromouracil is an analog of thymine
- Deaminating agents
 Nitrous acid removes the amine of C, so it becomes a U
- Alkylating agents
 Methylation of G makes it bp with T not C
- Intercalating agents
 Ethidium bromide intercalates which makes DNA polymerase to add or pass
over some nucleotides
 Physical agents
- Ionizing radiation
- UV
 Causes pyrimidine dimers
- Heat
 Causes break of glycosidic bonds, so there is an AP-site

BER
Glycosylase > AP-site
 Long-patch pathway
- Endonuclease APE1 cleaves on the 5’ side of the AP site
- Replication complex with DNA polymerase synthesizes 2-10 nt in the 5’-3’ direction
creating a 5’ flap
- FEN1 (flap endonuclease) removes the displaced DNA
- Ligase seals the nick
 Short-patch pathway
- Lyase breaks the sugar ring creating a nick on the 3’ side of the AP site
- APE1 and DNA polymerase replace a single nucleotide
- Ligase seals the nick

NER

2

, UvrABC system
1. Recognition step: the UvrAB complex recognizes the damage and binds to DNA
2. Incision step: then, UvrA dissociates and UrvC joins, creating the UvrCB complex
that cleaves on each side of the damage
3. Excision step: helicase UvrD removes the damaged DNA sequence
4. Gap-filling step: DNA polymerase synthesizes the replacement DNA and DNA
ligase seals the nick
Recognition step in eukaryotes
1. Global Genome Repair: XPC protein recognizes the damage
2. Transcription-coupled repair: RNA polymerase recognizes the damage during
transcription

MMR – Mut system e.coli
1. MutS dimer recognizes and binds to the mismatch
2. MutL dimer binds to MutS
3. MutS translocates the DNA until a GATC site is encountered, creating a loop in
the DNA
4. MutH endonuclease joins MutSL and cleaves the unmethylated strand
5. Cleaved DNA is excised by an exonuclease or/and helicase from the GATC to the
mismatch site
6. DNA polymerase synthesizes a new strand and DNA ligase seals the nick

SOS response E.coli
- LexA is a repressor of many genes involved in DNA repair
- When severe damage in the cell induces RecA, RecA triggers the cleavage of LexA
and several genes involved in DNA repair systems are expressed and repair the
damage

Homologous recombination
1. DSB initiates recombination (DSB can be spontaneous or induced)
2. Exonuclease (5’-3’ activity): degradation of the 5’ ends. It creates 3’ overhangs
3. Single strand invasion of one 3’ end into the homologous chromosome, it forms a D-loop
structure
4. Heteroduplex is formed. The recombinant joint moves with Branch migration (energetically
neutral)
5. Extension of the 3’ end by DNA polymerase
6. Displaced D-loop pairs with the other strand and DNA polymerase fills the gap
7. The free 5’ end performs a second single strand invasion, creating a second recombinant
joint
8. DNA ligase seals the nicks generating 4 complete DNA strands and 2 Holliday junctions
9. Resolution of the Holliday junctions is a critical step in HR
Two possible outcomes:
- Non-crossover DNA: both cut in the same axis
- Crossover recombinant DNA: cut in different axis



RecBCD in E.coli

3
$4.79
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
JdV24
3.0
(1)

Also available in package deal

Get to know the seller

Seller avatar
JdV24 Rijksuniversiteit Groningen
Follow You need to be logged in order to follow users or courses
Sold
2
Member since
4 year
Number of followers
3
Documents
4
Last sold
3 year ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions