100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Basisvaardigheden rekenen

Rating
-
Sold
-
Pages
10
Uploaded on
02-03-2016
Written in
2010/2011

In het eerste jaar van het nieuwe curriculum geschreven. Dit zijn de basisvaardigheden voor de verplichte rekentoets! Het hele boek samengevat.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
March 2, 2016
Number of pages
10
Written in
2010/2011
Type
Summary

Subjects

Content preview

Basisvaardigheden rekenen
Hoofdstuk 1 hoofdreken
1.1 Hoe maak je getallen?
0,1 = 1/10
0,01 = 1/100
0,001 = 1/1000

Vanaf 1 tot 10  9 hele getallen.
Vanaf 10 tot 100  90 hele getallen.
Vanaf 100 tot 1000  900 hele getallen.

Het grootste verschil tussen Romeinse cijfers en met ons systeem: bij
Romeinse cijfers is geen 0 en de waarde van een symbool is onafhankelijk
van de plaats. Bij ons systeem is wel een 0 en de waarde van een symbool
is afhankelijk van de plaats. (H,T,E, t, h)

1.2 Plus en min
Uitkomst van een optelling = som.
Uitkomst van een aftrekking = verschil.
De getallen 2 en 3 bij de optelling 2+3 of de aftrekking 3-2 zijn termen.

1.3 Handig optellen en aftrekken
Optellen d.m.v. compenseren: 2+7+8+3= 2+8=10; 3+7=10; 10+10=20
Aftrekken d.m.v. compenseren: als je van het ene getal iets aftrekt, moet
je van het andere getal ook iets aftrekken. Als je bij het ene getal iets
optelt, moet je bij het andere getal ook iets optellen.

1.4 Keer
Uitkomst van een vermenigvuldiging = product.
De getallen 2 en 3 bij de vermenigvuldiging 2x3 zijn factoren.
Een handige regel bij vermenigvuldigen is het vergroten en verkleinen van
de factoren in een product. Bijvoorbeeld door de ene factor te
verdubbelen en de andere te halveren. Voorbeeld: 6,8x5=3,4x10=34

1.5 Gedeeld door
Uitkomst van een deling = quotiënt.
In de deling 15:4 heet 15 het deeltal en 4 de deler.
Delingen kunnen opgaan (rest 0 hebben), of een rest hebben.
Gelijke vergroting of verkleining van deeltal en deler is handig voor uit het
hoofd rekenen.
Bijvoorbeeld: 342:5=684:10=68,4

1.6 Deelbaarheid
Ontbinden in factoren: een geheel getal schrijven als een
vermenigvuldiging van andere gehele getallen. Bijvoorbeeld: 58=2x29 of
81=3x3x3x3
De factoren heten de delers van het getal.
Priemgetal = een getal dat precies twee verschillende delers heeft: 1 en
zichzelf.
Je kunt een heel getal altijd ontbinden tot er alleen maar priemfactoren
ontstaan.

, 2520 is het kleinste getal dat deelbaar is door 2,3,4,5,6,7,8 en 9.
Alle priemgetallen onder de 100:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
Deelbaarheid door:
10: het getal eindigt op 0.
5: het getal eindigt op 0 of 5.
2: het getal eindigt op 0, 2, 4, 6 of 8. Het getal is even.
4: kijken naar de laatste twee cijfers, omdat elk honderdtal deelbaar is
door 4.
8: kijken naar de laatste drie cijfers, omdat elk duizendtal deelbaar is door
8.
6: alle cijfers hebben een rest van 4, behalve het laatste cijfer. Stap 1 Alle
cijfers vermenigvuldigen met 4, behalve het laatste cijfer. Stap 2 Alle
uitkomsten bij elkaar optellen + het laatste cijfer.
Voorbeeld: Is 356 deelbaar door 6?
3 x 4 + 5 x 4 + 6 = 38
(Stap 1 3 x 4 = 12 en 5 x 4 = 20. Stap 2 12 + 20 + 6 = 38)
Antwoord: kan niet, dus kan ook niet.
3: Kijk naar het honderdtal, tiental en eenheid  met hoeveel moet je
deze vermenigvuldigen? Dit is de rest. Tel de resten bij elkaar op.  Is dit
deelbaar door 3? Dan het getal ook.
Voorbeeld: Is 356 deelbaar door 3?
3 x 100 = 300  rest: 3
5 x 10 = 50  rest: 5
6 x 1 = 6  rest: 6
3 + 5 + 6 = 14
Antwoord: kan niet, dus kan ook niet.
7: Staartdeling gebruiken.
11: Stap 1 de getallen op de even plaatsen (van achter naar voren) bij
elkaar optellen en vermenigvuldigen met 10. Stap 2 de getallen op de
oneven plaatsen bij elkaar optellen. Stap 3 de uitkomst van beide met
elkaar optellen. Is dit deelbaar door 11? Dan het getal ook. (Tafel van 11
gebruiken)
Voorbeeld: 125.476.989
8 + 6 + 4 + 2 = 20
20 x 10 = 200
9 + 9 + 7 + 5 + 1 = 31
200 + 31 = 231
Antwoord: = 21, dus het getal is ook deelbaar door 11

1.7 Volgorde van bewerkingen
Vermenigvuldigen en delen gaan vóór optellen en aftrekken, maar wat
tussen haakjes staat gaat voor alles.
Soms moeten er haakjes gebruikt worden. Bijvoorbeeld: 10 meisjes en 7
jongens krijgen ieder 6 schriften: (10+7)x6=102

1.8 Hoofdrekenen en de rekenmachine
Rekenmachine (RM)

1.9 Rekenen uit en met het hoofd
$3.61
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Tara91 Hanzehogeschool Groningen
Follow You need to be logged in order to follow users or courses
Sold
75
Member since
9 year
Number of followers
60
Documents
76
Last sold
6 days ago

3.3

23 reviews

5
1
4
10
3
9
2
1
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions