100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Apuntes Tema 3 ALGII Latex

Rating
-
Sold
-
Pages
13
Uploaded on
29-09-2022
Written in
2021/2022

Apuntes completos del Tema 3 de la asignatura Algebra Lineal y Geometria II a Latex

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 29, 2022
Number of pages
13
Written in
2021/2022
Type
Class notes
Professor(s)
Maria cruz fernandez fernandez
Contains
All classes

Subjects

Content preview

ALG2. José Martı́nez Suárez



Tema 3
Hipercuádricas. Polaridad. Estudio geométrico de las cónicas y las cuádricas.



1. Formas bilineales simétricas
Esta sección contiene un breve resumen de resultados básicos sobre formas bilineales
simétricas.

Definición
Una aplicación f : V × V −→ K es una forma bilineal simétrica si verifica:

1. f (v1 , v2 ) = f (v2 , v1 )

2. f (v1 + v2 , w) = f (v1 , w) + f (v2 , w)

3. f (λv1 , v2 ) = λf (v1 , v2 )

para todos v1 , v2 , w ∈ V y todo λ ∈ K.

Nota. Si f es una forma bilineal simétrica entonces se verifican:

1. f (v1 + v2 , w1 + w2 ) = f (v1 , w1 ) + f (v1 , w2 ) + f (v2 , w1 ) + f (v2 , w2 )

2. f (λv1 , v2 ) = f (v1 , λv2 ) = λf (v1 , v2 )

para todos v1 , v2 , w1 , w2 ∈ V y todo λ ∈ K.

Teorema
El conjunto de las formas bilineales simétricas sobre V , denotado BS(V ), tiene
estructura de K-espacio vectorial.

Ecuación de una forma bilineal simétrica respecto de una base.

Sea B = {u0 , . . . , un } una base de V . Se llama matriz de f respecto de B y se denota
MB (f ) a la matriz simétrica de orden (n + 1) × (n + 1) cuyo elemento (i, j)- ésimo
es f (ui , uj ). Si las coordenadas de un vector u ∈ V son uB = (x0 , . . . , xn ) y las de
v ∈ V son v B = (y0 , . . . , yn ), entonces, siendo A = (aij ) = MB (f ), se tiene
  
a0 0 · · · a0 n y0
t  .. .
.   .. 
f (u, v) = uB Av B = (x0 , . . . , xn )  . .  . 
a0 n · · · an n yn

La expresión anterior es la ecuación de f respecto de B. Recordemos que xAxt
es la expresión, respecto de B, de la forma cuadrática asociada a f .



Página 1

, ALG2. José Martı́nez Suárez

Nota 2. Sea B ′ otra base de V , recordemos que la igualdad utB = M(B ′ , B)utB ′ , representa
las ecuaciones del cambio de base. Entonces se tiene

MB′ (f ) = M(B ′ , B)t MB (f )M(B ′ , B)

Definición
Llamaremos rango de una forma bilineal simétrica f sobre V , y lo notaremos
rango(f ), al de la matriz MB (f ), para cierta base B de V .

Nota 3. El rango de f no depende de la base elegida. El conjunto de las matrices simétricas
de orden (n + 1) con coeficientes en K será denotado por M S(n + 1, K).

Lema
El conjunto M S(n + 1, K) es un K-espacio vectorial. Para cada base B de V la
aplicación
MB : BS(V ) −→ M S(n + 1, K)
que a cada forma bilineal simétrica f asocia la matriz MB (f ) es un isomorfismo de
K-espacios vectoriales. En particular,

dim(BS(V )) = dim(M S(n + 1, K)) = (n + 2)(n + 1)/2

Si ϕ : V −→ V es un endomorfismo de V , se denota por ϕ × ϕ la aplicación de V × V en
V × V definida por (ϕ × ϕ)(u, v) = (ϕ(u), ϕ(v)).

Definición
Sean f, g dos formas bilineales simétricas en V . Diremos que f es linealmente
equivalente a g y lo notaremos f ∼ g, si existe un automorfismo ϕ de V tal que
f ◦ (ϕ × ϕ) = g. Es decir, si f (ϕ(u), ϕ(v)) = g(u, v) para todo par de vectores
u, v ∈ V .

Proposición
La relación ∼ definida anteriormente es una relación de equivalencia en el conjunto
BS(V ).

Nota 4. Utilizaremos las notaciones anteriores. Sea B una base de V . Notemos A =
MB (f ), B = MB (g) y C = MB (ϕ). La igualdad f ◦ (ϕ × ϕ) = g es equivalente a la
igualdad de matrices C t AC = B. Se dice entonces que las matrices A y B son congruen-
tes.

Proposición

La relación de congruencia es una relación de equivalencia en el conjunto M S(n +
1, K)




Página 2

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
josemartinez_0 Universidad de Sevilla
Follow You need to be logged in order to follow users or courses
Sold
48
Member since
6 year
Number of followers
34
Documents
25
Last sold
1 day ago

¡Hola! Tras haber obtenido el Diploma del Bachillerato Internacional, me dispongo a estudiar el Doble Grado en Ingeniería Informática y Matemáticas de la Universidad de Sevilla. En esta página subiré todos los apuntes, exámenes y resumenes escritos a ordenador que puedan ser de ayuda para todo aquel que esté estudiando alguna asignatura común a mí.

4.7

9 reviews

5
6
4
3
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions