100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Apuntes Tema 5 ALGII Latex

Rating
-
Sold
-
Pages
10
Uploaded on
29-09-2022
Written in
2021/2022

Apuntes completos del tema 5 de la asignatura Algebra Lineal y Geometría II escritos en Latex

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 29, 2022
Number of pages
10
Written in
2021/2022
Type
Class notes
Professor(s)
Maria cruz fernandez fernandez
Contains
All classes

Subjects

Content preview

ALG2. José Martı́nez Suárez



Tema 5
Hipercuádricas afines. Clasificación. Interpretación proyectiva de propiedades afines y
euclı́deas. Elementos de las cónicas y cuádricas euclı́deas.



1. Hipercuádricas en el espacio afı́n
Consideremos la inmersión habitual φ : An −→ Pn y denotemos H∞ : x0 = 0 el hiperplano
del infinito en Pn , respecto de φ.

Tomaremos Ra = {O; B} un sistema de referencia afı́n en An y Rp el sistema de referencia
proyectivo asociado.

Sean f y g dos polinomios de grado 2 del anillo K[x1 , . . . , xn ]. Diremos que f y g son
(linealmente) equivalentes, f ∼ g, si existe un escalar λ ∈ K\{0} tal que f = λg. Es-
ta relación es de equivalencia en el conjunto de los polinomios de grado 2 en el anillo
K[x1 , . . . , xn ].

Definición
Una hipercuádrica afı́n Q del espacio afı́n n-dimensional An es una clase de
equivalencia, por la relación anterior, de un polinomio f de grado 2 en n variables.
Notaremos Q = [f ] y diremos que f = 0 es una ecuación de Q respecto del sistema
de referencia Ra fijado.

La hipercuádrica-lugar de Q, notada La (Q) es el conjunto

L⊣ (Q) = {P = (a1 , . . . , an ) ∈ An : f (a1 , . . . , an ) = 0}.

Nota. Consideremos un polinomio
X X
f (x1 , . . . , xn ) = aij xi xj + ai0 xi + a00
1≤i≤j≤n 1≤i≤n


de grado 2. Existe una matriz simétrica A con coeficientes en K tal que

f (x1 , . . . , xn ) = (1, x1 , . . . , xn )A(1, x1 , . . . , xn )t

El conjunto La (Q) se puede describir como el conjunto de puntos P = (x1 , . . . , xn ) tales
que   
a00 a01 /2 · · · a0n /2 1
 a01 /2 a11 · · · a1n /2  x1 
 
(1 x1 · · · xn )  .. ..   ..  = 0,
 
.. ...
 . . .  . 
a0n /2 a1n /2 · · · ann xn
Se define la clase-matriz de Q respecto de Ra como MRa (Q) = [A].


Página 1

, ALG2. José Martı́nez Suárez

Si R′a = {O′ ; B ′ } es otro sistema de referencia afı́n, entonces

MR′a (Q) = M(R′a , Ra )t MRa (Q)M(R′a , Ra )

Definición
La hipercuádrica proyectiva en Pn que tiene clase-matriz [A] respecto de Rp se
denomina clausura proyectiva de Q y se denota por Q.

La restricción de Q al hiperplano H∞ se denomina hipercuádrica del infinito de Q,
y se denota Q∞ (o también Q∞ ).

Nota. Siempre existe la hipercuádrica del infinito asociada a una hipercuádrica afı́n dada.
Nota. Algunas conclusiones obvias son:

1. Lp (Q) ∩ An = La (Q).

2. Lp (Q) = La (Q) ⊔ Lp (Q∞ ).

3. Si f = 0 es una ecuación de Q respecto de Ra , entonces una ecuación de Q respecto
de Rp se obtiene homogeneizando f , esto es, añadiendo la variable x0 (al cuadrado)
en los sumandos de f que lo necesiten hasta lograr una forma cuadrática.

4. Si f = 0 es una ecuación de Q respecto de Ra , entonces una ecuación de Q∞
respecto de RH∞ = {(0 : 1 : 0 : · · · : 0)Rp , . . . , (0 : · · · : 0 : 1)Rp , (0 : 1 : 1 : · · · : 1)Rp }
se halla eliminando de f todos los términos que no son de grado 2, y una matriz
representante de Q∞ es la submatriz complementaria del primer elemento diagonal
a00 de A. Denotaremos esta submatriz habitualmente como A00 .

Definición
Diremos que dos hipercuádricas afines Q y Q′ en An son afı́nmente equivalentes

si Q y Q son proyectivamente equivalentes, mediante una homografı́a Ψ de Pn
compatible con φ. Es decir, Q y Q′ son afı́nmente equivalentes si existe Ψ homografı́a

de Pn tal que Q = Ψ.Q y Ψ(H∞ ) = H∞ .

Teorema
Sean Q y Q′ dos hipercuádricas afines en An . Entonces son equivalentes:

1. Q y Q′ son afı́nmente equivalentes.

2. Q y Q son proyectivamente equivalentes en Pn y Q∞ y Q′∞ lo son en H∞ ≃
Pn−1 .


2. Elementos afines de las hipercuádricas
En las tres definiciones que siguen, Q es una hipercuádrica afı́n en An , Q su clausura
proyectiva en Pn y Q∞ su hipercuádrica del infinito.


Página 2
$5.43
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
josemartinez_0 Universidad de Sevilla
Follow You need to be logged in order to follow users or courses
Sold
48
Member since
6 year
Number of followers
34
Documents
25
Last sold
1 day ago

¡Hola! Tras haber obtenido el Diploma del Bachillerato Internacional, me dispongo a estudiar el Doble Grado en Ingeniería Informática y Matemáticas de la Universidad de Sevilla. En esta página subiré todos los apuntes, exámenes y resumenes escritos a ordenador que puedan ser de ayuda para todo aquel que esté estudiando alguna asignatura común a mí.

4.7

9 reviews

5
6
4
3
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions