100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Introduction to Multivariate Statistics (FEB22003)

Rating
-
Sold
1
Pages
9
Uploaded on
07-09-2022
Written in
2020/2021

Comprehensive summary of Introduction to Multivariate Statistics (FEB22003X)

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 7, 2022
Number of pages
9
Written in
2020/2021
Type
Summary

Subjects

Content preview

Week 1
Multivariate distances
Distances between 𝒙 = (𝑥! , 𝑥" ) and 𝒄 = (𝑐! , 𝑐" )
- Euclidean: 𝑑(𝒙, 𝒄) = *(𝑥! − 𝑐! )" + (𝑥" − 𝑐" )"
- Manhattan (or 𝐿! ): 𝑑(𝒙, 𝒄) = |𝑥! − 𝑐! | + |𝑥" − 𝑐" |
- Maximum: 𝑑(𝒙, 𝒄) = max(|𝑥! − 𝑐! |, |𝑥" − 𝑐" |)
Statistical distance in 2 dimensions
- 𝑑(𝒙, 𝟎) = *𝑥!" + 𝑥""
- 𝑑(𝒙, 𝝁) = *(𝑥! − 𝜇! )" + (𝑥" − 𝜇" )"
#! $%! " #" $%" "
- 𝑑(𝒙, 𝝁) = 67 &!
8 +7 &"
8
#' " #' "
- 𝑑(𝒙, 𝝁) = 67&(! 8 + 7&(" 8 (for rotated axes)
! "
- 𝑑 " (𝒙, 𝝁) = (𝒙 − 𝝁)) 𝐴(𝒙 − 𝝁)
- 𝑑(𝒙, 𝝁) = *[𝒙 − 𝝁]) Σ $! [𝒙 − 𝝁]
Rotation matrix
cos 𝛼 sin 𝛼
To rotate the axes counter clockwise, use the following matrix: = D
− sin 𝛼 cos 𝛼
𝑥F cos 𝛼 sin 𝛼 𝑥! − 𝜇!
That gives rotated axes E ! G = = D= D
𝑥F" − sin 𝛼 cos 𝛼 𝑥" − 𝜇"
cos 𝛼 − sin 𝛼
To rotate the axes clockwise, use the following matrix: = D
sin 𝛼 cos 𝛼
Covariance independence
If two random variables X and Y are independent, then 𝐶𝑜𝑣(𝑋, 𝑌) = 0
Expectation random variables
𝐸(𝑥! ) 𝜇!
𝐸(𝑥" ) 𝜇"
𝐸(𝒙) = O S = O ⋮ S = 𝝁 (expectation of a vector is a vector)

𝐸Q𝑥* R 𝜇*
(Co)variance random vectors
)
𝑉𝑎𝑟(𝒙) = 𝐸 =Q𝒙 − 𝐸(𝒙)RQ𝒙 − 𝐸(𝒙)R D (expectation of a vector is a matrix)
𝜎!! 𝜎!" ⋯ 𝜎!*
𝜎"! 𝜎"" ⋯ 𝜎"*
=W ⋮ ⋮ ⋱ ⋮ [=∑ (𝜎++ = 𝜎+" and 𝜎+, = 𝐶𝑜𝑣Q𝑥+ , 𝑥, R)
𝜎*! 𝜎*" ⋯ 𝜎**
Correlation random vectors
-./(#,2)
𝜌(𝑥, 𝑦) = ⟺ 𝜎!" = 𝜌!" 𝜎! 𝜎"
4567(#)567(2)
1 𝜌!" ⋯ 𝜌!* 𝜎! 0 ⋯ 0
⎡ ⎤
𝜌 1 ⋯ 𝜌"* ⎥ ! 0 𝜎" ⋯ 0
Correlation matrix: 𝑅 = ⎢ !" and denote 𝑉 " = W ⋮ ⋮ ⋱ ⋮[
⎢ ⋮ ⋮ ⋱ ⋮ ⎥
⎣𝜌!* 𝜌"* ⋯ 1 ⎦ 0 0 ⋯ 𝜎*
! ! ! !
Then ∑ = 𝑉 " 𝑅 𝑉 " and 𝑅 = 𝑉 $" ∑ 𝑉 $"
Linear combinations
1. 𝐸(𝒂) 𝒙) = 𝒂) 𝐸(𝒙) = 𝒂) 𝝁
2. 𝑉𝑎𝑟(𝒂) 𝒙) = 𝒂) ∑ 𝒂
3. 𝐸(𝐴) 𝒙) = 𝐴) 𝐸(𝒙) = 𝐴) 𝝁
)
4. 𝑉𝑎𝑟(𝐴) 𝒙) = 𝐴 ∑ 𝐴

, Sample
The sample is a matrix 𝑋 with dimensions 𝑛 × 𝑝, where 𝑛 is the number of observations and
𝑝 the number of variables.
𝒙) 𝑥!! 𝑥!" ⋯ 𝑥!* ← first observation of a 𝑝 dimensional vector
⎡ !) ⎤ 𝑥"! 𝑥"" ⋯ 𝑥"*
𝑋 = ⎢𝒙" ⎥ = W ⋮ ⋮ ⋱ ⋮ [
⎢⋮⎥
⎣𝒙)8 ⎦ 𝑥8! 𝑥8" ⋯ 𝑥8*
Geometric interpretation of average
𝒙# 𝒚 𝒙# 𝒚
The projection of 𝒙 onto 𝒚 is: 𝒚# 𝒚 𝒚 = ; 𝒚 where 𝐿𝒚 = *𝒚) 𝒚 is the length of 𝒚
𝒚 ;𝒚

The unit vector is 𝒖 = [1 1 … 1]) and has length 𝐿𝒖% = √𝒖) 𝒖 = √𝑛
𝒙# 𝒖 !
The projection of 𝒙 onto the unit vector 𝒖# 𝒖 𝒖 = 𝒖 8 ∑8+=! 𝑥+ = 𝒖𝑥̅
Deviation vector
The vector that represents the difference of 𝒙 from the projection onto the unit vector is the
𝑥! − 𝑥̅
𝑥" − 𝑥̅
deviation vector: 𝒅 = 𝒙 − 𝑥̅ 𝒖 = O S

𝑥8 − 𝑥̅
Squared length: 𝐿𝒅 = 𝒅 𝒅 = (𝒙 − 𝑥̅ 𝒖)) (𝒙 − 𝑥̅ 𝒖) = ∑8+=!(𝑥+ − 𝑥̅ )" = 𝑛𝑉𝑎𝑟(𝑥) = (𝑛 − 1)𝑆
" )

Multiplying 2 deviation vectors gives 𝒅)+ 𝒅? = ∑8,=!(𝑥,+ − 𝑥̅+ )(𝑥,? − 𝑥̅? )
𝒅#
& 𝒅' 𝒅#
& 𝒅'
The angle between 2 deviation vectors 𝜃 is cos(𝜃) = ; = = 𝜌+,
𝒅 & ;𝒅 ' @ 𝒅# #
& 𝒅& @𝒅' 𝒅'

So, this is the correlation between 𝒙+ and 𝒙,
If 𝜃 = 0° then cos(𝜃) = 1 = 𝜌, and this is a perfect correlation
If 𝜃 = 90°, then cos(𝜃) = 0 = 𝜌, and the vectors are orthogonal

Week 2
Estimation 𝝁 and Σ
! !
• = ∑8+=! 𝒙+ is an unbiased estimator of 𝝁 and 𝑉𝑎𝑟(𝒙
𝒙 •) = Σ
8 8
!
𝑆 = 8$! ∑8+=!(𝒙𝒊 − 𝒙•)(𝒙𝒊 − 𝒙 •)) is an unbiased estimator of Σ
Generalized variance
The determinant of the (co)variance matrix is called the generalized variance. It summarizes
the (co)variance matrix in one number
Generalized variance in two dimensions
The determinant of the (co)variance matrix, det (𝑆), is the area spanned by the vectors of S
"
It can be calculated by det(𝑆) = 𝑠!! 𝑠"" − 𝑠!"
With 𝒅!) 𝒅! = ∑8+=!(𝑥+! − 𝑥̅! )" = (𝑛 − 1)𝑠!! , 𝒅)" 𝒅" = ∑8+=!(𝑥+" − 𝑥̅" )" = (𝑛 − 1)𝑠"" ,
𝒅!) 𝒅" = ∑8+=!(𝑥+! − 𝑥̅! )(𝑥+" − 𝑥̅" ) = (𝑛 − 1)𝑠!" and 𝒅!) 𝒅" = cos 𝛼 𝐿𝒅! 𝐿𝒅" the formula
! "
det(𝑆) = 78$!8 (𝐴𝑟𝑒𝑎 𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 𝑠𝑝𝑎𝑛𝑛𝑒𝑑 𝑏𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠)"
Generalized variance in p dimensions
! *
det(𝑆) = 78$!8 (ℎ𝑦𝑝𝑒𝑟𝑣𝑜𝑙𝑢𝑚𝑒)"
Theorems generalized variance
1. The generalized variance is zero ⟺ at least one of the deviation vectors is spanned by
others, i.e., columns of the sample matrix are linearly dependent
2. If 𝑛 ≤ 𝑝, then the generalized variance is zero
$8.48
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
LeonVerweij Cals College Nieuwegein (Nieuwegein)
Follow You need to be logged in order to follow users or courses
Sold
33
Member since
7 year
Number of followers
19
Documents
28
Last sold
5 months ago

2.0

1 reviews

5
0
4
0
3
0
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions