100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary theory calculus (2WBB0) for final exam

Rating
-
Sold
-
Pages
22
Uploaded on
19-08-2022
Written in
2021/2022

Summary theory calculus (2WBB0) for final exam

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
August 19, 2022
Number of pages
22
Written in
2021/2022
Type
Summary

Subjects

Content preview

2WBB0 – calculus
Summary fi nal exam

Contents
P.1 Real numbers and the real line........................................................................................4
Rules for inequalities........................................................................................................... 4
Intervals.............................................................................................................................. 4
Absolute value.................................................................................................................... 4
Properties of absolute values..............................................................................................4
Equations and inequalities involving absolute values..........................................................4
P.2 Cartesian coordinates in the plane...................................................................................5
Increments and distances...................................................................................................5
Distance D between P(x1, y1) and Q(x2, y2).........................................................................5
Straight lines....................................................................................................................... 5
Equations of lines................................................................................................................5
P.3 Graphs of quadratic equations.........................................................................................6
Circles and disks.................................................................................................................6
Equations of parabolas.......................................................................................................6
Shifting a graph...................................................................................................................6
P.4 functions and their graphs................................................................................................6
P.5 Combining functions to make new functions....................................................................7
Sums, differences, products, quotients and multiples.........................................................7
Composite functions...........................................................................................................7
Piecewise defined functions................................................................................................7
P.6 Polynomials and rational functions...................................................................................7
The factor theorem..............................................................................................................7
Roots and factors of quadratic polynomials.........................................................................8
P.7 the trigonometric functions...............................................................................................8
Some useful identities.........................................................................................................8
Other trigonometric functions..............................................................................................9
Sine law.............................................................................................................................. 9
Cosine law.......................................................................................................................... 9
1.1 Examples of velocity, growth rate, and area...................................................................10
The area of a circle........................................................................................................... 10
Average velocity................................................................................................................ 10
1.2 Limits of functions........................................................................................................... 10
One-sided limits................................................................................................................ 10

, The squeeze theorem.......................................................................................................10
1.3 Limits at infinity and infinite limits....................................................................................10
Limits at infinity and negative infinity.................................................................................10
Limits at infinity for rational functions................................................................................10
Infinite limits...................................................................................................................... 11
1.4 Continuity....................................................................................................................... 11
Continuity at an interior point............................................................................................11
Right and left continuity.....................................................................................................11
2.1 Tangent lines and their slopes........................................................................................12
The slope of a curve......................................................................................................... 12
Normals............................................................................................................................ 12
2.2 The derivative................................................................................................................. 12
Right derivative................................................................................................................. 12
Left derivative................................................................................................................... 12
2.3 Differentiation rules.........................................................................................................13
Differentiation rules........................................................................................................... 13
The reciprocal rule............................................................................................................ 13
The quotient rule............................................................................................................... 13
2.4 The chain rule................................................................................................................. 13
2.5 Derivatives of trigonometric functions.............................................................................13
An important trigonometric limit.........................................................................................14
Derivative of sine function.................................................................................................14
Derivative of cosine function.............................................................................................14
Derivatives of other trigonometric functions......................................................................14
2.8 The mean-value theorem................................................................................................14
3.1 Inverse functions............................................................................................................ 15
3.2 Exponential and logarithmic functions............................................................................15
Laws of logarithms............................................................................................................ 15
3.5 The inverse trigonometric functions................................................................................15
4.3 Indeterminate forms........................................................................................................16
4.4 Linear approximation......................................................................................................17
4.10 Taylor polynomials........................................................................................................17
5.4 Properties of the definite integral....................................................................................18
Mean-value theorem for integrals......................................................................................18
5.5 The fundamental theorem of calculus.............................................................................18
Part I................................................................................................................................. 18
Part II................................................................................................................................ 19

, 5.6 The method of substitution.............................................................................................19
Integrals of tangent, cotangent, secant, and cosecant......................................................19
6.1 Integration by parts.........................................................................................................20
6.2 Techniques of integration...............................................................................................20
6.5 Improper integrals........................................................................................................... 20
Improper integrals of type I...............................................................................................20
Improper integrals of type II..............................................................................................20
7.9 First-order differential equations.....................................................................................21
Separable equations......................................................................................................... 21
First-order linear equations...............................................................................................21
$9.57
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jbtue

Get to know the seller

Seller avatar
jbtue Technische Universiteit Eindhoven
Follow You need to be logged in order to follow users or courses
Sold
7
Member since
6 year
Number of followers
7
Documents
11
Last sold
1 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions