100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Sumario Teorema de Gauss apunte teórico práctico

Rating
-
Sold
-
Pages
5
Uploaded on
10-08-2022
Written in
2021/2022

Este es un apunte teórico practico sobre el teorema de Gauss para hallar las raíces de polinomios de grado mayor o igual a 3. La aplicación del teorema es para polinomios con coeficientes enteros y para hallar sus raíces racionales. Figuran en el articulo, un ejemplo guiado y ejercitación adicional con sus respectivos resueltos. Esta herramienta matemática es fundamental para la factorización de funciones polinómicas con grado mayor o igual a 3.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Secondary school
Study
ESO
Course
School year
4

Document information

Uploaded on
August 10, 2022
Number of pages
5
Written in
2021/2022
Type
Summary

Subjects

Content preview

Profesora Mariana Bustamante

En el siguiente apunte vamos a hablar de las
funciones polinomicas y cortes con el eje x.

Para poder calcular las raices de un polinomio
de grado mayor o igual a 3, generalmente vamos
a necesitar nuevas herramientas matemáticas.
Una de ellas es el Teorema de Gauss, que nos
da una pista para poder hallar las raices o cortes
con el eje x de nuestra función.
Veamos de qué se trata. Antes de empezar,
te pido que completes los siguientes espacios:

Leer y completar los espacios
Raices de un
Consideremos el siguiente polinomio
𝑃(𝑥) = 27𝑥 3 + 3𝑥 − 10, que tiene todos sus
coeficientes enteros.
polinomio con
2
Calculemos 𝑃 (3) =__________________
2
coeficientes
Como 𝑃 (3) =______, resulta que x=2/3 es el corte
con el eje x de P(x). enteros
Prestemos atención que este número (2/3) cumple con
las siguientes condiciones:

• El numerador 2 divide al coeficiente
independiente -10
Podemos notar que existe una
• El denominador 3 divide al coeficiente
relacion entre la raiz de un
principal 27 polinomio y los terminos
independiente y principal

, Ejemplo
Hallar cortes con eje x del
polinomio
𝑷(𝒙) = 𝟐𝒙𝟑 + 𝟑𝒙𝟐 − 𝟏

• Verificamos que todos los coeficientes de
P(x) son enteros ya que los números: ……,
………. Y ……… pertenecen a Z

• Hallamos los divisores p del termino
independiente, ellos son:…………..

• Hallamos los divisores q del coeficiente
principal, ellos son……………..

• Formamos todas las fracciones irreducibles
de la forma p/q=………………; ………….;
Entonces para hallar las raices ……………….. de …………..y………….. .
un polinomio con • Evaluamos el Polinimoio en cada una de las
coeficientes…………………….., debemos seguir cuatro fracciones del paso anterior:
los siguienes pasos: 𝑃(1) = 𝑃(… . ) =
Teorema de Gauss 𝑃(… . . ) = 𝑃(… . . ) =
• Hallar los divisores p del término
El teorema de Gauss que generaliza esta situacion independiente, y los divisores q del
afirma que : En conclusión, las raices racionales de
coeficiente………………….
nuestro polinomio P(x) son………
• Formar con ellos…………………..
Cuando una fracción irreducible p/q es raiz de un
irreducibles p/q , que serán las
polinomio con coeficientes enteros, el denominador p
posibles raices del polinomio
divide al término independiente y el numerador q
• Especializar o evaluar el polinomio en
divide al coeficiente principal. estas fracciones para ver si alguna
es…………….. de él.




Profesora Mariana Bustamante
$5.43
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
maribustamante

Also available in package deal

Get to know the seller

Seller avatar
maribustamante Mates con Mari
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
7
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions