100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Parametric Equations, Vector Functions, Curvilinear Motion solved questions

Rating
-
Sold
-
Pages
15
Grade
A+
Uploaded on
18-07-2022
Written in
2021/2022

Parametric Equations, Vector Functions, Curvilinear Motion solved questions

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
July 18, 2022
Number of pages
15
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

CHAPTER 34
Parametric Equations, Vector Functions,
Curvilinear Motion

PARAMETRIC EQUATIONS OF PLANE CURVES

34.1 Sketch the curve given by the parametric equations x = a cos 6, y = a sin 6.
Note that x2 + y2 = a2 cos2 0 + a2 sin2 0 — a2(cos2 6 + sin2 0) = a2. Thus, we have a circle of radius a with
center at the origin. As shown in Fig. 34-1, the parameter 6 can be thought of as the angle between the positive
jc-axis and the vector from the origin to the curve.




Fig. 34-1 Fig. 34-2

34.2 Sketch the curve with the parametric equations x = 2 cos 0, y = 3 sin 6.
x2 y 2
-T + -g - 1. Hence, the curve is an ellipse with semimajor axis of length 3 along the y-axis and semiminor
axis of length 2 along the x-axis (Fig. 34-2).

34.3 Sketch the curve with the parametric equations x = t, y = t2.
y = t2 = x2. Hence, the curve is a parabola with vertex at the origin and the y-axis as its axis of symmetry
(Fig. 34-3).




Fig. 34-3 Fig. 34-4


34.4 Sketch the curve with the parametric equations x = t, y = t2.
x = 1 + (3 — y)2, x — l = (y - 3)2. Hence, the curve is a parabola with vertex at (1,3) and axis of symmetry
y = 3 (Fig. 34-4).

34.5 Sketch the curve with the parametric equations x = sin t, y = —3 + 2 cos t.

x2 + = sin 2 1 + cos 2 1 = 1. Thus, we have an ellipse with center (0, —3), semimajor axis of length 2
along the y-axis, and semiminor axis of length 1 along the line y = —3 (Fig. 34-5).

274

, PARAMETRIC EQUATIONS, VECTOR FUNCTIONS, CURVILINEAR MOTION 275




Fig. 34-5 Fig. 34-6

34.6 Sketch the curve with the parametric equations x = sec t, y = tan t.
X2 = y2 + l. Hence, x2 — y2 = l. Thus, the curve is a rectangular hyperbola with the perpendicular
asymptotes y = ±x. See Fig. 34-6.


34.7 Sketch the curve with the parametric equations x = sin t, y = cos 2t.
y = cos 2t = 1 — 2 sin 2 1 = 1 — 2x2, defined for \x\ ^ 1. Thus, the curve is an arc of a parabola, with vertex at
(0,1), opening downward, and with the _y-axis as axis of symmetry (Fig. 34-7).




Fig. 34-7 Fig. 34-8


34.8 Sketch the curve with the parametric equations x = t + 1 It, y = t - 1 It.
x2 = t2+ 2 + 1/12, y2 = t2-2+l/t2. Subtracting the second equation from the first, we obtain the
hyperbola Jt 2 -y 2 = 4 (Fig. 34-8).


34.9 Sketch the curve with the parametric equations * = 1 + t, y = l-t.
x + y = 2. Thus, we have a straight line, going through the point (1,1) and parallel to the vector (1, —1); see
Fig. 34-9.




Fig. 34-9 Fig. 34-10
$9.10
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jureloqoo

Also available in package deal

Get to know the seller

Seller avatar
jureloqoo METU
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
46
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions