100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Taylor and Maclaurin Series solved questions

Rating
-
Sold
-
Pages
7
Grade
A
Uploaded on
18-07-2022
Written in
2021/2022

Taylor and Maclaurin Series solved questions

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
July 18, 2022
Number of pages
7
Written in
2021/2022
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

CHAPTER 39
Taylor and Maclaurin Series

39.1 Find the Maclaurin series of e*.
Let /(*) = **. Then f("\x) = e' for all «>0. Hence, /'"'(O) = 1 for all n & 0 . Therefore, the
Maclaurin series


39.2 Find the Maclaurin series for sin x.

Let /(;c) = sin X. Then, /(0) = sinO = 0, /'(O) = cosO= 1, /"(O) = -sin 0 = 0, /"'(O) = -cosO= -1,
and, thereafter, the sequence of values 0,1,0, — 1 keeps repeating. Thus, we obtain



39.3 Find the Taylor series for sin x about ir/4.

Let f(x) = sinx. Then /(ir/4) = sin (ir/4) = V2/2, f ' ( i r / 4 ) = cos(irf4) = V2/2, f(ir/4) = -sin (77/4) =
and, thereafter, this cycle of four values keeps repeating.
Thus, the Taylor series for sin* about



39.4 Calculate the Taylor series for IIx about 1.

Let Then, and, in general,

So /(">(1) = (-!)"«!. Thus, the Taylor series is




39.5 Find the Maclaurin series for In (1 - x).

Let/(AT) = In (1 - x). Then,/(0) = 0,/'(0) = -1,/"(0) = -1,/"'(0) = -1 -2,/ < 4 ) = -1 • 2 • 3, and, in general
/ ( ">(0) = -(„ _ i)i Thus, for n > l,/ ( / 0 (0)/n! = -1/n, and the Maclaurin series is


39.6 Find the Taylor series for In x around 2.

Let f(x) = lnx. Then, and, in general,

So /(2) = In 2, and, for n > 1, Thus, the

Taylor series is (x - 2)" = In 2 + i(x - 2) - 4(x - 2)2 + MX - 2)3 - • • •.


39.7 Compute the first three nonzero terms of the Maclaurin series for ecos".

Let f ( x ) = ecos*. Then, f'(x)=-ecos'sinx, /"(*) = e'05* (sin2 *-cos*), /'"(x) = ecos' (sin jc)(3 cos x +
1-sin 2 *), /(4)(;<:) = e<:osj:[(-sin2*)(3 + 2cosA-) + (3cosA: + l-sin 2 Ar)(cosA:-sin 2 jc)]. Thus, /(O) = e,
/'(0) = 0, f"(0) = -e, f"(0) = 0, /(4)(0) = 4e. Hence, the Maclaurin series is e(l - |*2 + |x4 + • • • ) .

340

, TAYLOR AND MACLAURIN SERIES 341

39.8 Write the first nonzero terms of the Maclaurin series for sec x.

I Let /(x) = secx. Then, /'(*) = sec x tan x, f"(x) = (sec *)(! + 2 tan 2 x), /'"(*) = (sec x tan x)(5 + 6 tan 2 x),
fw(x) = 12 sec3 x tan 2 x + (5 + 6 tan2 x)(sec3 x + tan 2 x sec x). Thus, /(O) = 1, /'(O) = 0, /"(O) = 1,
/"'(0) = 0, / ( 4 ) =5. The Maclaurin series is 1+ $x2 + &x* + • • •.

39.9 Find the first three nonzero terms of the Maclaurin series for tan x.

Let /(x) = tan;t. Then /'(*) = sec2*, /"(*) = 2 tan x sec2 x, f'"(x) = 2(sec4 x + 2 tan 2 x + 2 tan 4 x),
/ (*) = 8 (tan x sec2 x)(2 + 3 tan2 x),
(4)
/(5)(*) = 48 tan 2 x sec4 x + 8(2 + 3 tan2 *)(sec4 x + 2 tan 2 x + 2 tan 4 x).
So /(0) = 0, /'(0) = 1, f'(0) = 0, /"'(0) = 2, /< 4 >(0) = 0, / <5) (0) = 16. Thus, the Maclaurin series is
*+ 1*3 + &X3 + ••-.

39.10 Write the first three nonzero terms of the Maclaurin series for sin -1x.

Let /Ot^sirT1*. /'(*) = (I-*2)'1'2, /"(x) = *(1 - Jc2)'3'2, f'"(x) = (1 - x2ys'2(2x2 + 1).
/(4)(*) = 3*(l-*2)-7/2(2*2 + 3), /(5)(*) = 3(1 - * 2 )- 9/2 (3 + 24*2 + 8*4). Thus, /(0) = 0, /'(0) = 1,
/"(O) = 0, /'"(O) = 1, / <4> (0) = 0, /(5>(0) = 9. Hence, the Maclaurin series is x + $x3 + -jex5 + • • -.
x

39.11 If f(x) = 2 an(x - a)" for \x - a\ < r, prove that In other words, if f(x) has a power
ii -o
series expansion about a, that power series must be the Taylor series for/(*) about a.

f(a) = aa. It can be shown that the power series converges uniformly on | * - a | < p < r , allowing
differentiation term by term:
n(n - 1) • • • [/I - (A: - 1)K(* - «)""*- M we let x = a, fm(a) = k(k-l) 1 • ak = k\ • ak. Hence,




39.12 Find the Maclaurin series for

By Problem 38.34, we know that for |*| <!• Hence, by

Problem 39.11, this must be the Maclaurin series for

39.13 Find the Maclaurin series for tan ' x.

By Problem 38.36, we know that for Hence, by
Problem 39.11, this must be the Maclaurin series for tan *. A direct calculation of the coefficients is tedious.

39.14 Find the Maclaurin series for cosh *.

By Problem 38.43, for all *. Hence, by Problem 39.11, this is the Maclaurin series for
cosh *.

39.15 Obtain the Maclaurin series for cos2 *.

Now, by Problem 38.59, and, therefore, cos 2* =

Since the latter series has constant term 1, and

By Problem 39.11, this is the Maclaurin series for cos2 *.
$9.10
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jureloqoo

Also available in package deal

Get to know the seller

Seller avatar
jureloqoo METU
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
0
Documents
46
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions